Z UOISIDA
SL'L 48 #20Z 990 SO 21epdn

@8 pico
%% bricks

Copyright © 2022 Robotistan

All rights reserved. It is strictly forbidden to copy, reproduce, use, publish and
distribute the text, photographs and other content in this book, in whole or in part,
without permission, except for individual use.

Contents: Mustafa Kemal Avci, Abdullah Kaya, Selim Gayretli
Translation: Naze Gizem Ozer

Design: Ahmet Gursu-Elanur Tokalak

Pico Bricks Developer Team

Yasir Cicek - Project Manager
Yusuf GUndogdu - Software Developer
Mehmet Suat Morkan - Chief Developer

Atakan Oztruk - Mehmet Ali Dag - Hardware Developer

-
ropotstan

Powered by

MicroBIocks

John Maloney - Turgut Guneysu - Kathy Giori - Bernat Romagosa

Update: 12 Dec. 2022 Ver. 115

CONTENTS

What Is PicoBricks? 4
1. Development Environments 5
1.1. MicroBlocks Block Programming Language 6
1.1.1. Interface Introduction 7
1.1.2. MicroBlocks-Picobricks Connection and Operation 9
1.2. Thonny (MicroPython) IDE for Beginners 13
1.2.1 Thonny IDE Setup 13
1.2.2. Thonny IDE Interface 13
1.2.3. Upload MicroPython Firmware to Raspberry Pi Pico 14
1.2.4. Installing and Running Code on Raspberry Pi Pico 15
1.3. Arduino IDE 17
1.3.1. Writing and Running Code with Arduino IDE 18
1.3.2. How to Add Arduino Library? 20

2. PROJECTS 22
2.1. Blink 23
2.2. Action - Reaction 26
2.3. Autonomous Lighting 29
2.4. Thermometer 33
2.5. Graphic Monitor 38
2.6. Dominate the Rhythm 4]
2.7 Show Your Reaction 47
2.8. My Timer 53
2.9. Alarm Clock 60
2.10. Know Your Color 66
2.11. Magic Lamp 74
2.12. Smart Cooler 77
2.13. Buzz Wire Game 81
2.14. Dinosaur Game 89
2.15. Night and Day 94
2.16. Voice Controlled Robot Car 104
2.17. Two Axis Robot Arm 111
2.18. Smart House 122
2.19. Piggy Bank 129
2.20. NFC Smart Door 136
2.21. Automatic Trash Bin 146
2.22. Digital Ruler 152
2.23. Air Piano 159
2.24. Maze Solver Robot 167
2.25. Smart Greenhouse 174

What Is PicoBricks?

PicoBricks is an electronic development board + software which is designed for use
in maker projects. With ten detachable modules included, PicoBricks can be used to
create a wide variety of projects. It also includes a protoboard that you can use to add
your own modules!

PicoBricks is for everyone interested in electronics and coding. Beginners with no prior
experience will find it easy to get started thanks to the modular hardware design,
Scratch-like block coding environment, and simulator. Those with experience can dig
more deeply into electronics or explore coding in Python. And even the most expert
makers will appreciate how quickly they can
explore ideas and create prototypes with
Pico Bricks.

Unlike other boards, PicoBricks has an
incredible amount of flexibility for every
level of makers! Bricks IDE has example
codes for different scenarios.

Learn coding from zero to hero with
MicroBlocks or the PicoBricks's drag-n-
drop, block coding builder. MicroBlocks
is the easiest coding experience ever
created and widely known in the maker
industry.

Have a question? You can find more information here

'& POWERED BY
b MicroBlocks

a

DEVELOPMENT
ENVIRONMENT

1. Development Environments

In software, web and mobile application development, the development
environment is a workspace with a set of processes and programming tools used

to develop the source code for an application or software product. Development
environments enable developers to create and innovate without breaking something
in a live environment. You can code PicoBricks using both text-based and block-
based editors. MicroBlocks is a powerful editor with which you can code Picobricks
with blocks.

Thonny editor is a free, dedicated IDE(integrated development environment) for
Python designed for beginners and one of the best choices for those who are just
starting to learn MicroPython. Whether you just code MicroPython or code an
electronic circuit board, Thonny provides you with a lot of support.

Arduino IDE is an open-source software, designed by Arduino.cc and mainly used for
writing, compiling & uploading code to almost all Arduino Modules. It is an official
Arduino software, making code compilation too easy that even a common person
with no prior technical knowledge can get their feet wet with the learning process. If
you are proficient in Arduino C language or want to learn C language, PicoBricks and
Arduino IDE will be very good choices for you.

1.1. MicroBlocks Block Programming Language

MicroBlocks is a free, Scratch-like blocks programming language for learning
physical computing with educational microcontroller boards such as the micro:bit,
Adafruit Circuit Playground Express, and many others. MicroBlocks is a live
environment. Click on a block and it runs immediately, right on the board. Try out
commands. See and graph sensor values in real time. No more waiting for code to
compile and download. Want to display an animation while controlling a motor? No
problem! MicroBlocks lets you write separate scripts for each task and run them at
the same time. Your code is simpler to write and easier to understand. MicroBlocks
runs on many different boards, but your scripts are portable. Buttons, sensors, and
display blocks behave the same on all boards with the relevant hardware.Once you
run the codes in MicroBlocks, you can disconnect the USB and feed the PicoBricks
with a different power source. The codes on the card will work automatically. You can
use Thonny IDE and Arduino IDE to code PicoBricks in text-based.

To code PicoBricks with MicroBlocks, let's open https:/microblocks.fun/ in the
browser (Google Chrome and Edge browsers are recommended).

Get Started Learn Contribute About

if codingisfun

make boardie smile :)

Download

You don't need to install anything to run MicroBlocks in a Chrome or Edge browser;
you can run the online editor by clicking the Run button in the menu at the top
right of the screen. By clicking the Download button, you can download the version
suitable for your operating system and install it on your computer.

You can save MicroBlocks Web editor in your browser and use it without internet
access. Run MicroBlocks in your browser to register the MicroBlocks Web app, then
click the install button in the upper-right corner of your browser’s URL bar.

Google Chrome

Microsoft Edge

microblocks.html g

1.1.1. Interface Introduction

nicroblocks.html 16

When you open the MicroBlocks program, an interface like the image will greet you.
You can review the detailed explanation of the program interface below.

say
graph

pPRL

Scrpls Pane Drag blocks here io bulld scnpls. [! ment.

1.MenuBar (@ & d #): In this section, the first button from left to right allows
us to change the language option of the program. The second button is the menu
where we can see the advanced MicroBlocks code options and the firmware update
is done while the third button offers the save options. The fourth button opens a
graph window used by the graph block to plot the data, while the fifth rightmost
button is used to connect to PicoBricks.

2. Block Categories: This field contains the categories of blocks used for
programming in MicroBlocks. Categories are grouped using different colors for each
category. As the categories are selected, the relevant blocks in that category will be
listed in the Block 3 field in the Palette.

3. Block Palette: As selections are made in the Block categories field, blocks with
specific functions will be listed in this field. Codes are written by dragging and
dropping the blocks in this area to the Scripting area number 4.

4. Scripting Area: This is the area where all coding activities take place. User drag
and drop blocks into this area to create scripts and custom blocks (functions).

5. Start/Stop Buttons (> ®): This area contains two icons, Start and Stop, which
are used to control the MicroBlocks programs.

6. Library List (Libraries +): In this area, there are libraries that are loaded
depending on the requirements of user scripts and micro-devices.

1.1.2. MicroBlocks-PicoBricks Connection and Operation

Connect the board to your computer while holding down the white BOOTSEL
button.

Rospberry Pi Pico (©2020 ., BOOTSEL g

.‘.334 E -
o T

==
S

From the MicroBlocks menu (gear icon), select update firmware on board.

MicroBlocks

about...
update firmware on board
show advanced blocks

Firmware installation takes just a few seconds. If you are running the MicroBlocks
app, MicroBlocks will connect to the board automatically when it is done.

Extra Steps in Browser

If you are running MicroBlocks in the browser or as a web app, you need to help
the browser. For security reasons, the browser cannot access the board’'s USB drive
without asking the user.

First, select your board type from the menu.

Select board type:

micro:bit

Calliope mini

Circuit Playground Express
Circuit Playground Bluefruit
Clue

Citilab ED1

M5Stack-Core

M5StickC

M5StickC+

M5Atom-Matrix

ESP32

ESP8266

RP2040 (Pico)

You'll be asked to select the USB drive for the board in the browser’s file save dialog.

Connect USB cable while holding down the
white BOOTSEL button before proceeding.

You will be asked to save the firmware file.

Select RPI-RP2 as the destination drive,
then click Save.

Follow the instructions to save the firmware file on your board. When the file is saved
(Just a few seconds), click to USB icon to connect to it.

Firmware Installed

Reconnect to the board by clicking the
"Connect" button (USB icon).

L OK)

I*@ Clicking the Connect button will display the system USB ports where

the micro devices are plugged in. In this window, you can connect PicoBricks to
MicroBlocks by first selecting the Pico device and then clicking the Connect buttons.
When the connection is successful, a green circle will appear behind the USB icon.

microblocks.fun wants to connect to a serial port

mbed Serial Port (COM3) - Paired

10

MicroBlocks is a real-time coding editor.
There is no process of compiling and
uploading the codes to the card after
they are written. When you click on the
code blocks, the codes will run. First,
you need to import PicoBricks' library
into the Microblocks editor. You have to
click the Add Library button for this.

microBlocks

3/ Small, Fast, Human Frizndly

@ d @

B Input

B Pins

| control

B operators
[Variables
P Data

graph G

M MyBlocks | Add Library |

Libraries e '

In the File Open window that opens, click the Kits and Boards button to open the list
of devices that you can code with Microblocks.

Opacsiocs @ 2 ol B # .
'
8 o e —
B Pins : ‘I
o) .
il Operators graph EEB -
s T T
e [1 Other
§ My Blocks . U
Libraries + “sm
| [} Sound
|1 System
Basic Sensors ubl
LED Display ubl
NeoPixel.ubl
Radio.ubl
Ringlone. ubl
Sarvo.ubl
Tone.ubl
[Caca I o

Click PicoBricks.ubl from the drop-down list, and then click the Open button.

&) Kits and Boards

B8

Libraries

Hummingbird. ubl Robotistan PicoBricks Library

NeZha.ubl

PicoBricks.ubl This library controls these Pico

J Bricks components;
- Red LED

4 - RGB LED

= - DC Motors
- Piezo speaker
- Relay Switch (5V-250V, 5A)
- Button
- Potentiometer (variable
resistor)
- Light sensor (light dependent
resistor)
- Temperature and humidity
sensor (DHT11)

v2.0
Depends: DHT

by MicroBlocks

(L. microBlocks -

kg) Simafl Fast, Human Frieadly @ a ‘ @ I

B output —

B Input PicoBricks beep &) ms

il Pins PicoBricks button

[Control

B Operators PicoBricks humidity

l Variables PicoBricks light sensor

[l Data

I le Blocks PicoBricks potenticmeter

Libraries e PicoBricks random color

PicoBricks colorr @ g @ b @ (0
PicoBricks ||

PicoBricks set motor @ speed
PicoBricks setred LED
PicoBricks set relay

PicoBricks set RGB LED color

PicoBricks temperature (°C)

PicoBricks turn off RGB LED

If all went well, the PicoBricks library and code blocks will be displayed in the Code

blocks panel.

11

\

a

Now let’s run our first code. First, drag and drop the when started block in the control
menu to the code writing area. Then drag the PicoBricks set red LED block from the
Picobricks category and add it below the when started block. When you press the
start button, you will see the red led on the PicoBricks light up.

’ After editing your codes in MicroBlocks, when you click the Start button, your
codes will be installed into PicoBricks and run.

. The Stop button stops the codes from running. But the codes uploaded to
Picobricks are not deleted. You can disconnect USB, run Picobricks with external
power supply.

If you have previously uploaded the necessary firmware file to encode PicoBricks
with MicroBlocks to Pico, you can connect by clicking the USB icon. If you are going
to connect MicroBlocks PicoBricks for the first time, you can follow the steps in
heading 1.1.2.

For detailed information on using the Microblocks editor, visit:

https://wiki.microblocks.fun/ide

12

1.2. Thonny (MicroPython) IDE for Beginners

Download version 3.3.13 for At the heart of PicoBricks is the Raspberry Pi Pico.
=== Windows s Mac + Linux The Thonny Raspberry Pi is a great choice for
coding Pico and therefore PicoBricks.

Far the eurious: 4.0.0b3

1.2.1 Thonny IDE Setup

Visit https://thonny.org/ Select the version suitable for your system and download it
to your computer. Then perform the installation. You can also install the Thonny IDE
using the command “ $ pip install thonny “

1.2.2. Thonny IDE Interface

T Thony - <unted @ 1:21 — - = | Whenyou start Thony, you will see a

el e D L window like the one below. We will

1Fw 0% & Program arguments: ~ X .

wﬁ,m,. " write our codes in part 1. In part 2, we
1 print("Hello World")| will see the outputs of our codes.

Shell © Program tree
b ~

222>

Python 3.7.0 |

A BC DE FGHI J
1EHd OF% @3RI @

-l

A: Opens an empty script file.

B: Allows you to open an existing code file.

C: Allows you to save changes to the code file you are working on.

D: Runs the code you wrote in the interpreter environment you specify.
E: Allows you to check for errors in your code.

F: Allows you to run lines of code in order to debug.

13

G: Lets you navigate through the commands in the line of code while debugging.
H: Lets you exit debug.
I: Allows you to switch from debug mode to run mode.

J: Makes the code stop executing.

1.2.3. Upload MicroPython Firmware to Raspberry Pi Pico

In order for Raspberry Pi Pico to understand the MicroPython codes we will write, we
must install a special operating system for it. We call this firmware. Open the Thonny
editor and click Select interpreter from the Run menu.

File Edit V Run Tools Help

oS Select interpreter...
hello.py @ Run current script F5 .
: Debug current script (nicer) Ctri+F5
1 | Debug current script (faster) Shift+F5 The code in b

Select the Raspberry Pi Pico from the drop-down list shown in area 1. Leave the 2nd
area as in the image, click on the 3rd area.

T Thonny options X

General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant

Which interpreter or device should Thonny use for runnin_g your code?
IMicroPython (Raspberry Pi Pico)

Details

Connect your device 1o the computer and select comesponding port below
(lock for your device name, "USE Serial” or "UART™).
If you cant find i1, you may need to install proper USE driver first

Port
- Try to detect port automatically = &

Install or update fimware

| coeet |

Connect Pico to your computer’'s USB port with a cable while holding down the
white bootsel button on it.

.
BOOTSEL |

14

PicoBricks Project Book

After the Install button is activated, you can release the button. Press the Install
button and wait for the firmware to load.

Tk Install MicroPython firmware for Raspberry Pi Pico x

Version to be installed: v1.18 (2022-01-17)
Target device location: EN\

Target device model: Raspberry Pi RP2

[nstan || cancel |

After the installation is complete, click the Close button to complete the installation.

1.2.4. Installing and Running Code on Raspberry Pi Pico

Plug the Pico's cable directly into the computer’'s USB port. You don’t need to hold
down the Bootsel button. Select the Select interpreter option from the Run menu

in Thonny. Make sure Raspberry Pi Pico is selected in section 1. Click the OK button to
close the window.

T& Thonny options b4

General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant

Which interpreter or device should Thonny use for running your code?

Details

Connect your device to the computer and select corresponding port below
(look for your device name, "USB Serial” or "UART").
If you can't find it, you may need to install proper USB driver first.

Port

< Try to detect port automatically =

Install or update firmware

[ok]| cance

15

T Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

B- v Assistant
| Exception

Files

This com;
C:\ Users
Picobrick

@ he

2 M

otes

bject inspector
utline

Shell

Stack
Variables
@ m|
Program arguments
& 1§ Plott
o mi otter
& m Increase font size Ctrl++
Decrease font size Ctrl+- -
@ n Focus editor Alt+E
Focus shell Alt+5
& nn

Raspberry Pi Pico

Activate the Files option from the View menu. A
long file explorer tab will be placed on the left side
of the screen. If you see Raspberry Pi Pico in
section 1, it means that it is connected to Thonny
Pico without any problems, you are ready to write,
save and run your code. The part number 2 behind
the menu is the file explorer area that shows the
working directory on your computer.

The MicroPython codes you wrote in Thonny
consist of libraries arranged for Raspberry Pi Pico
and similar micro control cards and are called
MicroPython. The syntax and almost all libraries
work the same as MicroPython.

The “hello world” application of the software world
is the “blink” application to physical programming.
Write down the code shown in field 1. Click the save
button in area 2. Thonny will ask you in the window
in area 3 whether you want to save your code in

the working directory on your computer or in Pico’s
onboard memory. If you choose your computer, the
resulting file will appear in field 4, and if you choose
Pico, the resulting file will appear in field 5.

Files

This computer

Picabricks

Raspherry Pi Pico

& Program arguments: |

8 Wsers |, Mustafa Kemal AVCI Y Deskiop

O ey |

<untitled> *

I | from machine import Pino

2 | import time

i |led = Pin(25, Pin.OUT)

while True:
led.toggle()
time.sleep(1)

T Where to save to?

This computer

Raspberry Pi Pico

”

——
¥ v

MicroPython (Raspberry Fi Pico)

16

Select Raspberry Pi Pico from the Save in window, type “blink.py” in the File Name

field and click the OK button.

y

File name;

innEcpyI -

1.3. Arduino IDE

File Edit View Run Tools Help
B8 Q & Program arguments: .
|Run current script {F5)|
Files [blink.py]
This compufer =]
C:\ Users Y, Mustafa Kemal AVCI Y, Desktop —
Picobricks 2
2
=
Raspberryv Pico =
@ blink.py

Cancel

After seeing the “blink.py” file in Pico’s
file explorer, click the F5 key on the
keyboard or the green Run button on
the toolbar, and the code file will be run
by Pico. If you see the internal LED on
the Pico blinking at 1second intervals,
you have successfully written and run
your first code. Congratulations:)

An important note: If you want the
code you have written to run as soon
as Pico is opened without giving a run
command, you should save your code
in Pico’'s main directory with the name
“main.py”.

Picobricks offers us the opportunity to code with Arduino C. Getting started coding
the Raspberry Pi Pico at the heart of PicoBricks with the widely used Arduino IDE is

pretty easy.

Download the Arduino IDE 1.8.x setup file from https://www.arduino.cc/en/software

to your computer and install it.

First you need to add Raspberry Pi Pico to Arduino IDE. Start the Arduino IDE. Then

go to Tools>Board>Boards Manager.

17

@ sketch_jun02 uino 1.8.19 = C
File Edit Sketch Tools Help

Deneyap Gelistirme Kartlari

Auto Format Ctrl+T
Archive Sketch
sketd? JunUQaI_ Fix Encoding & Reload
: Manage Libraries... Ctrl+5Shift+l
void setupg i i i
/) - | Serial Monitor Ctrl+5hift+M
u
B ¥ Serial Plotter Ctri+5Shift+L
1 WIFi101 / WiEj mware Updater *
= [= h
o Board:' 10 Uno" | Boards Manager...
i Port 3 Arduino ARM (32-bits) Boar
// put y Get Board Info Arduino AVR Boards
i :
1 Programmer: "AVRISP mkll* : | Sadians nean Wk Dowds
|

Burn Bootloader

Write “Raspberry Pi Pico” in field 1. After waiting for a while, click on the Arduino

Mbed OS RP2040 Boards option and click the install button in field 2

& Boards Manager n b4

Type |4l | [Raspberry P Fico
Arduino Mbed 08 RP2040 Boards ~
by Arduino

Boards included in this package:
Raspberry Pi Pico.

Online Help

Marz Info

1311~ Install

[DEPRECATED - Please install standalone packages] Arduino Mbed 0S Boards

by Arduino DEPRECATED
Boards included in this package:
Arduing Nano 22 BLE, Arduino Nano 22 BLE Sense, Arduino Mano RP2040 Connact, Arduino Portenta H7, Arduino Edge Control, Raspberry Pi

During all these installations, you must accept the approvals it will ask you for. When
the installation is complete and click the close button, you will have added Pico to

the Arduino IDE.

1.3.1. Writing and Running Code with Arduino IDE

When you want to code Pico with Arduino IDE, you just have to connect it to your

computer by holding the BOOTSEL button for the first time.

BOOTSEL

y]

18

In this way, Pico will be connected in bootloader mode and recognized by your
computer as external memory. Connect Pico to your computer by holding down the
Bootsel button. After seeing Pico as the computer’s flash memory, activate your card
by going to Tools>Board>Arduino Mbed OS RP2040 boards> Raspberry Pi Pico.

@ sketch jun02a | Ardui 19 = [} s
File Edit Sketch Tools H
Auto Format Ctri+T
Archive Sketch
skatch_jun0ls Fix Encoding & Reload
3 Manage Libraries... Ctrl+Shift+1 e
void setup : ! :
'/ GE Serial Monitor Ctrl+5Shift+M
24 PEE A seral protter Crrl+Shiftel
} e WIiFi101 / WiFININA Firmware Updater
Board: "Arduino Ung”) Boards Manager..
L T o Part 3 Arduing ARM (32-bits) Boards H
/7 put ¥ Get Board Info Arduino AVR Boards ¥ ,
1 Programmer: "AVRISP midl” o elbig S e 1__"”5‘:_““’_1_%
Arduino megaAVR Boards >
Bum Bootloader S L
Deneyap Gelistirme Kartlari b

Write the code in the field number 1 below and follow the File>Save path and save it
anywhere on your computer with the name “Blink”.

—
|#| Save sketch folder as_. o *
kel ia Hanum [PP eoFirM-
void setup - Ad i Degistirme tarihi Tiir
! _(:' { " 5 T o * Aramanizla eglesen ode yok,
pinMode (LED BUILTIN, OUTPUT); Hizlt erigim
} "4
void loop() { L
digitalWrite (LED BUILTIN, HIGH); m
delay (1000) ; e
digitalWrite (LED BUILTIN, LOW); L
= Bu bilgisayar
delay (1000) ; P
} %
< 2>
Dosya ade m"i- "l | Ka_;f_del _|
Kayd fir AII-Flles[“J »:' Iptal | |

File Eet Tools Help

After the saving process, we must click the “Upload”
button in the st field to compile the code and save it
in Pico. When we see Done uploading at the bottom,
our code will run in Pico and the built-in LED will
blink at 1-second intervals. Important Note: While
coding Picobricks with Arduino IDE, connect it to
your computer by pressing the BOOTSEL button at
the first pass from Micropython or Microblocks
firmware. You do not need to press BOOTSEL for
subsequent code uploads. Enjoyable projects:)

void setup() {
pinMode (LED BUILTIN,

vofld loop () |
igitalWrite (LED BUIL
elay (1000) ;
igitalWrite (LED BUIL
lay (1000) ;

19

1.3.2. How to Add Arduino Library?

To install a new library into your Arduino IDE you can use the Library Manager. Open
the IDE and click to the “Tools” menu and then Tools > Manage Libraries.

@ sketch decOla | Arduino 1.8.19
File Edit Sketch Took Help
Auto Format Ctrl+T
Archive Sketch
sketch_declt} Fix Encoding & Reload
veid setup() Manage Libraries... Ctrl+ Shift+|
OEEE YRR s Monitor Ctrl= Shift-M
i Serial Plotter Ctrl+5Shift+L

void loop() § WIFI101 / WiFiNINA Firmware Updater

Board: "Raspberry Pi Pico™ »
Port
Get Board Info

Programmer >

Burn Bootloader

Then the Library Manager will open and you will find a list of libraries that are already
installed or ready for installation.

Search for the library you want to install by typing its name, then select the version of
the library. Finally, click the “install” button and wait for it to install.

Installing the library depends on your connection speed. When the installation is
complete, you will start to see “INSTALLED" next to the library. In this way, you can
easily install the libraries you need according to the codes you have written or the
project you have made.

We define our library as shown below.

20

)

a

PicoBricks Project Book

@ sketch_dec0la | Arduine 1.8.19
File Edit Sketch Tocols Help

sketch_decl1a §

ginclude <Wire.h>
#include "ACROBOTIC 55D130&.h"

gdefine TRIGGER PIN 15
#define ECHO PIN 14
gdefins MRX DISTANCE 400

21

PROJECTS

2.1. Blink

In real life, the employee, who has just started to learn the job, first undertakes
the most basic task.The cleaner first learns to use the broom, the cook learns to
use the kitchen utensils, the waiter to carry a tray. We can increase these examples.
The first code written by newcomers to software development is known as “Hello
World". Printing “Hello World” as soon as the program starts on the screen or
console window in the language they use is the first step in programming. Like
a baby starting to crawl... The first step to robotic c oding, also known as physical
programming, is the Blink application. It means winking at robotic coding. By simply
connecting an LED to the circuit board, the coding is made to keep the LED blinking
continuously. Ask people who have developed themselves in the field of robotic
coding how they got to this level. The answer they will give you starts like this; it all
started with a flashing LED!

LEDs are the language of electronic devices. Thanks to the LEDs, the programmer
tells the users at which stage of the task the device is, what the problem is, if any,
and which options are active. In this project, you will learn the types of LEDs on it
with Picobricks and learn how to flash them.

2.1.1. Project Details and Algorithm

There are 1 x5mm red LED and 1 x WS2812B RGB LED on PicoBricks. While normal
LEDs can light up in one color, RGB colors can light up in different colors, both
primary and secondary colors. In this project we will use the red LED on Picobricks.

In the project, we will write the necessary codes to turn on the red LED on PicoBricks,
turn it off after a certain time, turn it on again after a certain time, and repeat these
processes continuously.

2.1.2. Wiring Diagram

You can code and run PicoBricks’ modules without wiring. If you are going to use
the modules by separating them from the board, you should make the module
connections with grove cables.

23

2.1.4. Project Proposal

Can we light the LED with different time intervals? For example; flashing of the LED
several times per second, several times every half second.

2.1.5. Coding the Project with MicroBlocks

when started

forever

PicoBricks set red LED

\ENE 500 BT EEES

PicoBricks set red LED
wait millisecs

Click to access the project’'s MicroBlocks codes.

24

PicoBricks Project Book

2.1.6. MicroPython Codes of the Project

fromm machine import Pin #to access the hardware
on the pico
import utime #time library

led = Pin(7, Pin.OUT) #initialize digital pin 7 as an output for LED
while True: #while loop

led.toggle() #LED on&off status
utime.sleep(0.5) #wait for a half second

2.1.7. Arduino C Codes of the Project

void setup() {

// put your setup code here, to run once:

pinMode(7, OUTPUT); / initialize digital pin 7 as an output
}

void loop() {
/| put your main code here, to run repeatedly:
digitalWrite(7, HIGH); //turn the LED on by making the voltage HIGH
delay(500); /wait for a half second
digitalWrite(7, LOW); //turn the LED on by making the voltage LOW
delay(500); //wait for a half second

}

GitHub Blink Project Page
=] ¥ [
¥

J]
Ofe

http:/rbt.ist/link

25

2.2. Action - Reaction

As Newton explained in his laws of motion, a reaction occurs against every action.
Electronic systems receive commands from users and perform their tasks. Usually

a keypad, touch screen or a button is used for this job. Electronic devices respond
verbally, in writing or visually to inform the user that their task is over and what is
going on during the task. In addition to informing the user of these reactions, it can
help to understand where the fault may be in a possible malfunction. In this project,
you will learn how to receive and react to a command from the user in your projects
by coding the button-LED module of PicoBricks..

2.2.1. Project Details and Algorithm

Different types of buttons are used in electronic systems. Locked buttons, push
buttons, switched buttons... There is 1 push button on PicoBricks. They work like

a switch, they conduct current when pressed and do not conduct current when
released. In the project, we will understand the pressing status by checking whether
the button conducts current or not. If it is pressed, it will light the LED, if it is not
pressed, we will turn off the LED.

2.2.2. Wiring Diagram

You can code and run PicoBricks’ modules without wiring. If you are going to use
the modules by separating them from the board, you should make the module
connections with grove cables.

26

2.2.3. Project Image

2.2.4. Project Proposal

In this project, the LED turns on when the button is pressed, and the LED turns off
when the button is released. You can write the necessary codes for the LED to turn
on when the button is pressed once and to turn the LED off when it is pressed again.

2.2.5. Coding the Project with MicroBlocks

when PicoBricks button

PicoBricks set red LED

when not PicoBricks button

PicoBricks set red LED

Click to access the project's MicroBlocks codes.

2.2.6. MicroPython Codes of the Project

from machine import Pin #to acces the hardware picobricks
led = Pin(7, Pin.OUT) #initialize digital pin as an output for led
push_button = Pin(10, Pin.IN,Pin.PULL_DOWN) #initialize digital
pin 10 as an input

while True: #while loop

27

PicoBricks Project Book

logic_state = push_button.value() #button on&off status

if logic_state == True: #check the button and if it is on
led.value(1) #turn on the led

else:
led.value(0) #turn off the led

2.2.7. Arduino C Codes of the Project

void setup() {

// put your setup code here, to run once:
pinMode(7, OUTPUT); //initialize digital pin 7 as an output
pinMode(10,INPUT); //initialize digital pin 10 as an input

void loop() {
// put your main code here, to run repeatedly:
if (digitalRead(10) == 1){ /lcheck the button and if it is on

digitalWrite(7, HIGH); //turn the LED on by making the voltage HIGH
}

else{
digitalWrite(7, LOW); //turn the LED on by making the voltage LOW

}
delay(10); //wait for half second

}

GitHub Action - Reaction Project Page

http://rbt.ist/actionreaction

28

2.3. Autonomous Lighting

It is called the state of being autonomous when electronic systems make a decision
based on the data they collect and perform the given task automatically. The
components that enable electronic systems to collect data from their environment
are called sensors. Many data such as the level of light in the environment, how
many degrees the air temperature is, how many It/min water flow rate, how loud
the sound is, are collected by the sensors and transmitted to PicoBricks as electrical
signals, that is data. There are many sensors in PicoBricks. Knowing how to get data
from sensors and how to interpret and use that data will improve project ideas like
reading a book improves vocabulary. In this project, with PicoBricks, we will enable
the LED to turn on when the amount of light decreases in order to understand the
working systems of the systems where the lighting is turned on automatically when
it gets dark.

2.3.1. Project Details and Algorithm

Sensors are electronic components that detect data in external environments and
send data to microcontrollers. The LDR sensor also detects the amount of light in
the environment and sends analog values. In our project, we will first check the
incoming data when the environment is light and dark by reading the LDR sensor
values, then we will set a limit according to these data, and if the amount of light is
below this limit, we will turn off the RGB LED of Picobricks, if not, we will turn off the
LED.

2.3.2. Wiring Diagram

You can code and run PicoBricks’ modules without wiring. If you are going to use
the modules by separating them from the board, you should make the module
connections with grove cables.

29

2.3.3. Project Image

2.3.4. Project Proposal

In this project, we turned on the LED on the LDR sensor data on PicoBricks if the

environment was dark, and turned off the LED if it was bright. By processing the

LDR sensor data, you can code a nightlight or table lamp in your home to turn on
automatically in the dark. You can use the relay on Picobricks for this.

2.3.5. Coding the Project with MicroBlocks

when PicoBricks light sensor (0-100) % < @) | when PicoBricks light sensor (0-100) % > @@

PicoBricks set RGB LED color . | PicoBricks turn off RGB LED

Click to access the project’s MicroBlocks codes.

2.3.6. MicroPhyton Codes of the Project

import time

from machine import Pin, ADC
from picobricks import WS2812
#define the library

ldr = ADC(Pin(27))
ws = WS2812(6, brightness=0.4)

30

PicoBricks Project Book

#define the input and output pins

#define colors
RED = (255, 0, O)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

COLORS = (RED, GREEN, BLUE)
#RGB color Code

while True:#while loop
print(ldr.read_ul6()) #print the value of the LDR sensor to the screen.

if(Idr.read_ul6()>10000):#let’'s check the Idr sensor
for color in COLORS
#turn on the LDR
ws.pixels_fill(color)
ws.pixels_show()

else:
ws.pixels_fill((0,0,0)) #turn off the RGB

ws.pixels_show()

2.3.7. Arduino C Codes of the Project

#include <Adafruit_NeoPixel.h>
#define PIN 6

#define NUMLEDS 1
#define LIGHT_SENSOR_PIN 27

Adafruit_NeoPixel leds = Adafruit_NeoPixel|(NUMLEDS, PIN, NEO_GRB + NEO_
KHZ800);

//define the libraries
int delayval = 250; // delay for half a second

void setup()

{
leds.begin();

31

PicoBricks Project Book

}

void loop() {
int analogValue = analogRead(LIGHT_SENSOR_PIN);
for(int i=0;i < NUMLEDS;i++)
{
if (@analogValue > 200) {
// pixels.Color takes RGB values, from 0,0,0 up to 255,255,255
leds.setPixelColor(i, leds.Color(255,255,255));
leds.show(); // This sends the updated pixel color to the hardware.
delay(delayval);
}
else {
leds.setPixelColor(i, leds.Color(0,0,0)); // white color code
leds.show(); // This sends the updated pixel color to the hardware.

}

}
delay(10);

}

GitHub Autonomous Lighting Project Page

http://rbt.ist/autonomouslighting

32

2.4. Thermometer

Sensors are the sense organs of electronic systems. We use our skin to feel, our eyes
to see, our ears to hear, our tongue to taste, and our nose to smell. There are already
many sense organs (sensors) in the picobrix. Also, new ones can be added. You can
interact with the environment using humidity, temperature, light and many more
sensors. PicoBricks can measure the ambient temperature without the need for any
other environmental component.

Ambient temperature is used in greenhouses, incubators, in environments used for
the transport of drugs, briefly in situations where the temperature change must be
constantly monitored. If you are going to do an operation on temperature change

in your projects, you should know how to measure the ambient temperature. In this
project, you will prepare a thermmometer with PicoBricks that will display the ambient
temperature on the OLED screen.

2.4.1. Project Details and Algorithm

Picobricks has a DHT11 module. This module can sense the temperature and
humidity in the environment and send data to the microcontroller. In this project,
we will write the necessary codes to print the temperature values measured by the
DHT11 temperature and humidity sensor on the OLED screen.

2.4.2. Wiring Diagram

j a
u
n
X
o
xr
]:;_
§ IS
o
f
b 1

lediitel

(o)

afnlalals

33

2.4.3. Construction Stages of the Project

Temperatures

i]

degrees

(D BSOS D/ VAS

a3t aoy

2.4.4. Project Proposal

In order to develop your project, you can make the red LED light up and a warning
phrase appear on the screen when the temperature in the environment rises above
30 degrees.

2.4.5. Coding the Project with Microblocks

 when started
.initialize i2c address(hex) @ reset pin# 0
flip
forever

wite at x @B y @ inverse

write PicoBricks temperature (°C) at x @ y @ inverse

b write at x m y @ inverse

wait @) millisecs

Click to access the project’s Microblocks codes.

34

PicoBricks Project Book

2.4.6. Micropython Codes of the Project

fromm machine import Pin, I12C #to acces the hardware picobricks
from picobricks import SSD1306_12C, SHTC3 #oled library
import utime #time library

#to acces the hardware picobricks

WIDTH=128

HEIGHT=64

#define the weight and height picobricks

i2c = 12C(0, scl=Pin(5), sda=Pin(4)) # Init 12C using pins
oled = SSD1306_I12C(WIDTH, HEIGHT, i2c)
shtc_sensor = SHTC3(i2c)

while True:
oled fill(O)#clear OLED
oled.show()
temperature = shtc_sensor.temperature()
humidity = shtc_sensor.humidity()
oled.text(“Temperature: “1510)#print “Temperature: “ on the OLED at x=15 y=10
oled.text(str(int(temperature)),55,25)
oled.text(*“Humidty: “, 30,40)
oled.text(str(int(humidity)),55,55)
oled.show()#show on OLED
utime.sleep(0.5)#wait for a half second

2.4.7. Arduino C Codes of the Project

#include <Wire.h>
#include <Adafruit_SSD1306.h>

#define SCREEN_ADDRESS 0x3D

Adafruit_SSD1306 oled (128, 64, &Wire);
float temp;

void shtc_init(){
Wire.beginTransmission(0x70);
Wire.write(Ox35);
Wire.write(0x17);

35

PicoBricks Project Book

Wire.endTransmission();
delay(500);
Wire.beginTransmission(0Ox70);
Wire.write(OXEF);
Wire.write(OxC8);
Wire.endTransmission();
delay(500);
Wire.requestFrom(0x70, 3);

float temperature(){

int rcvl =0;
intrcv2 =0;
Wire.beginTransmission(0Ox70);
Wire.write(Ox78);
Wire.write(Ox66);
Wire.endTransmission();
delay(100);
Wire.requestFrom(0x70, 2);
while(Wire.available()) {

rcvl = Wire.read();

rcv2 = Wire.read();
}
delay(100);
float temp = (((4375 * ((revl << 8) | rcv2)) >>14) - 4500) /100;
return temp;

}

void setup() {
Serial.begin(115200);
Wire.begin();
shtc_init();
oled.begin(SSD1306_SWITCHCAPVCC, 0x3C);
oled.clearDisplay();
oled.setTextColor(WHITE);

void loop() {
oled.clearDisplay();
temp = temperature();
Serial.print(“Temp: “);

36

PicoBricks Project Book

Serial.printIn(temp);
oled.setCursor(0O, 0);
oled.print(“Temp: “);
oled.setCursor(35, 0);
oled.print(String(temp));
oled.display();
delay(100);

GitHub Thermometer Project Page

http://rbt.ist/thermometer

37

2.5. Graphic Monitor

When we look at the electronic items around us, you realize that they have many
replaceable features and they are designed by engineers to be most useful to the
user. Such as lighting systems, cooking systems, sound systems, cleaning systemes.
The way it works, the amount, the method, etc., by many system users. features can
be programmed to change.

In robotic projects, in the processes of changing the sound level, changing the motor
speed, changing the brightness of the light, the electrical voltage is sent in a way
that creates a lower or higher effect. By decreasing the frequency of the electrical
signal to the component, it can be operated at a lower level, and by increasing the
frequency of the outgoing electrical signals, it can be operated at a higher level.

In systems without a screen, real-time graphic monitors are used to monitor some
sensors and variables involved in the operation of the system. Graphic monitors
make it very easy to detect the fault.

2.5.1. Project Details and Algorithm

In this project, we will prepare a project in which we increase or decrease the
brightness of the red LED with a potentiometer. In addition, we will simultaneously
monitor the electrical change occurring during this process on the Microblocks
graphic monitor. When the PicoBricks starts, the potentiometer value will be read
continuously and the brightness value of the LED will be adjusted. Applications

in which the effect of the electrical signal is reduced by changing the frequency

is called PWM. We will send the analog values we read from the potentiometer as
PWM signals to the red LED and we will be able to adjust the illumination intensity.

2.5.2. Wiring Diagram

guuEEEpaYEsE s

- +
&
) =
B '
L &
s x|
s
o M
= a0
- - |
™ L
=

o

el

38

2.5.3. Project Image

selpin _pb pin RedLED 1o PicoBrcks potenthmetss

graph PicoBricks polentiometes

2.5.4. Project Proposal

As you turn the potentiometer, you can prepare a project that changes the volume

of the sound coming out of the buzzer and displays the flowing data on the graphic
monitor.

2.5.5. Coding the Project with Microblocks

set pin _pb pin_ RedLED to PicoBricks potentiometer

graph

rescale PicoBricks potentiometer from (o N 1023 MR CN|

0 I 100 B
>

Click to access the project’s Microblocks codes.

2.5.6. Micropython Codes of the Project

from machine import Pin, ADC,PWM

from utime import sleep

#define libraries

led=PWM(Pin(7))

pot=ADC(Pin(26,Pin.IN))

#define the value we get from the led and pot
led.freq(1000)

39

PicoBricks Project Book

while True: #while loop
led.duty_ule(int((pot.read_ul6()))

print(str(int((pot.read_ul6()))) #Turn on the LED according to the value from the
potentiometer

sleep(0.1) #delay

2.5.7. Arduino C Codes of the Project

void setup() {
// put your setup code here, to run once:
pinMode (7,0UTPUT); //initialize digital pin 7 as an output

pinMode (26,INPUT); //initialize digital pin 26 as an input Serial.begin(9600); //start
serial communication

void loop() {
// put your main code here, to run repeatedly:
int pot_val = analogRead(26);
int led_val = map(pot_val, 0,1023, O, 255);
digitalWrite(7, led_val);
Serial.printin(led_val);
//turn on the LED according to the value from the potentiometer

delay(100); //wait

GitHub Graphic Monitor Project Page

http://rbt.ist/monitor

40

2.6. Dominate the Rhythm

Many events in our lives have been digitized. One of them is sounds. The tone

and intensity of the sound can be processed electrically. So we can extract notes
electronically. The smallest unit of sounds that make up music is called a note. Each
note has a frequency and intensity. With the codes we will write, we can adjust
which note should be played and how long it should last by applying frequency and
intensity.

In this project, we will prepare a music system that will play the melody of a song
using the buzzer module and adjust the rhythm with the potentiometer module
with PicoBricks. You will also learn the use of variables, which has an important place
in programming terminology, in this project.

2.6.1. Project Details and Algorithm

With PicoBricks you can play any song whose sheet we know. We will use the
button-LED module to start the song, the potentiometer module to adjust the speed
of the song, and the buzzer module to play the notes.

Potentiometer is analog input module. It is variable resistance. As the amount of
current flowing through it is turned, it increases and decreases like opening and
closing a faucet. We will adjust the speed of the song by controlling this amount of
current with codes. Buzzers change the sound levels according to the intensity of the
current passing over them, and the sound tones according to the voltage frequency.
With Microblock’s, we can easily code the notes we want from the buzzer module by
adjusting their tones and durations.

We will check the button press status in the project. We will make the melody start
playing when the button is pressed. During the playing of the melody, we will use

a variable called rthm to increase or decrease the playing times of the notes at the
same rate. After PicoBricks starts, we will enable the user to adjust the rthm variable
with the potentiometer, either while playing the melody or before playing it. As long
as Picobricks is on, we will divide the potentiometer value (0-1023) by 128 and assign
it to the rthm variable. Variables are data structures that we use when we want to
use values that can be changed by the user or sensors in our codes. When the user
presses the button to start the song, we will prepare the note codes that will allow
the notes to play for the duration calculated according to the rthm variable.

41

2.6.2. Wiring Diagram

MR
w

0 O

L n
3 -

.
o ’
I i
| &2 -4 i
I f_,- B50o ¢
- bakl ¢
e [

o
] i

2.6.4. Project Proposal

To make your project more visual, you can light a different color LED according to the
played note, show the note names and playing speed on the OLED screen.

2.6.5. Coding the Project with Microblocks

Drag the “When started” from the Control category and the “forever” block under

it to make PicoBricks run the code continuously as soon as it starts. Add the OLED
display library and place the code that initializes the display before the forever
block so that you can display the user’s speed setting on the screen. Click the Add a
variable button in the Variables category. When you type and confirm rithm in the
dialog that opens, the rithm variable is created.

42

PicoBricks Project Book

il Hisrl il

nttaitze 12c {EEREERES addressihex) IEEN reset pine I

Click to access the project’s MicroBlocks codes.

2.6.6. Micropython Codes of the Project

fromm machine import Pin,PWM,ADC,|2C #to acces the hardware picobricks
from utime import sleep #time library

from picobricks import SSD1306_12C

import utime

WIDTH=128
HEIGHT=64%
#define the weight and height picobricks

sda=machine.Pin(4)

scl=machine.Pin(5)

#we define sda and scl pins for inter-path communication

i2c=machine.l2C(0, sda=sda, scl=scl, freqg=2000000)#determine the frequency values
oled=SSD1306_I2C(WIDTH, HEIGHT, i2c)

button= Pin(10,Pin.IN,Pin.PULL_DOWN)
pot=ADC(Pin(26))

buzzer= PWM(Pin(20))

#determine our input and output pins
pressed = False

rithm =0
tones = {
“A3": 220,

43

PicoBricks Project Book

“D4": 294,
“E4": 330,
“F4": 349
}

#define the tones

mysong — ['HA3H'H E4”,”E4"," E4,f’" E4"'" E4n'n E4”,"F4"'" E4”,”D4"," F4n'n E4n]#|etls define the
tones required for our song in the correct order into a sequence

noteTime = [1,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,1|#define wait times between tones
into an array

def playtone(frequency):
buzzer.duty_ule(6000)
buzzer.freq(frequency)
#define the frequencies of the buzzer
def playsong(pin):
global pressed
pressed = True
#play the tones with the right cooldowns

#AnN finally we need to tell the pins when to trigger, and the function to call when
they detect an event:

button.irg(trigger=Pin.IRQ_RISING, handler=playsong)
note_count = 9999
played_time =0
while True:
current_time = utime.ticks_ms()
oled.show()
oled.text(“Press the button”,0,0)

if (note_count < len(mysong)):
oled-fill(0)
oled.text(“Dominate “30,10)
oled.text(“the “,45,25)
oled.text("Rhythm “,35,40)
rithm=((pot.read_ul16()/65535.0)*20) +1
if (current_time - played_time)/1000.0 >= noteTime[note_count]/rithm:
played_time = utime.ticks_ms()
playtone(tones[mysong[note_count]])
note_count +=1
else:
buzzer.duty_ule(0)

A4

PicoBricks Project Book

if pressed:

note_count =0
pressed = False

2.6.7. Arduino C Codes of the Project

#include <Wire.h>
#include “ACROBOTIC_SSD1306.h"

int buzzer = 20;

int pot =26;

int button=10;

//define the buzzer, pot and button

int Re = 294;
int Mi = 330;
int Fa = 349;
int La = 440;
//define the tones

void setup()

{
Wire.begin();
oled.init();
oled.clearDisplay();

pinMode(buzzer,OUTPUT);
pinMode(26,INPUT);
pinMode(button,INPUT);

//determine our input and output pins

}

void loop()

{
int rithm = (analogRead(pot))/146;

String char_rithm = String(rithm);

45

PicoBricks Project Book

oled.setTextXY(3,4);
oled.putString(“Speed: “);
oled.setTextXY(3,10);
oled.putString(char_rithm);

/lprint “Speed: “ and speed value on the OLED at x=3 y=4
delay(10);
if (digitalRead(button) == 1){

oled.clearDisplay();
oled.setTextXY(3,2);
oled.putString(“Now playing...");
/lprint “Speed: “ and speed value on the OLED at x=3 y=4
tone(buzzer, La); delay (1000/(rithm-+1));
tone(buzzer, Mi); delay (500/(rithm-+1));
tone(buzzer, Mi); delay (500/(rithm-+1));
tone(buzzer, Mi); delay (500/(rithm-+1));
tone(buzzer, Mi); delay (500/(rithm-+1));
tone(buzzer, Mi); delay (500/(rithm-+1));
(); ()
tone(buzzer, Fa); delay (500/(rithm+1));
tone(buzzer, Mi); delay (500/(rithm-+1));
tone(buzzer, Re); delay (500/(rithm-+1));
tone(buzzer, Fa); delay (500/(rithm+1));
tone(buzzer, Mi); delay (1000/(rithm+1));
//play the notes in the correct order and time when the button is pressed

);
);
);
tone(buzzer, Mi); delay (500/(rithm-+1));
);
);
)

oled.clearDisplay(); //clear the screen

}

noTone(buzzer); //stop the buzzer

GitHub Dominate the Rhythm Project Page

http://rbt.ist/rhythm

46

2.7 Show Your Reaction

Now we will prepare a game that develops attention and reflexes. Moving quickly
and being able to provide attention for a long time are important developmental
characteristics of children. Preschool and primary school children do activities
that increase their attention span and reflexes, as they are liked by their parents
and teachers. The electronic system we will prepare will be a game that increases
attention and develops reflexes. After finishing the project, you can compete with
your friends. :)

In this project you will learn about the randomness used in every programming
language. With PicoBricks, we will develop an electronic system using OLED display,
Button-LED and Buzzer module.

2.7.1. Project Details and Algorithm

A timer starts running as soon as the PicoBricks are turned on. With this timer,

we can measure 1thousandth of a second. One thousandth of a second is called a
millisecond. Timers are used in many electronic systems in daily life. Timed lighting,
ovens, irons, food processors...

When our project starts working, we will display a welcome message on the OLED
screen. Then we will print on the screen what the user has to do to start the game.

In order to start the game, we will ask the player to prepare by counting backwards
from 3 on the screen after the button is pressed. After the end of the countdown, the
red LED will turn on in a random time between 2-10 seconds. We will reset the timer
immediately after the red LED lights up. We will measure the timer as soon as the
button is pressed again. This value we get will be in milliseconds. We will display this
value on the screen as the player's reaction time.

2.7.2. Wiring Diagram

LT

x
o
b -]
o]
i
k)
n

< -fl.’.’f *1’{.5'.?;?.?:

L]
III| [
:_.Il - - 3
o

ARRAARRERARARAREAAAR

nh
o]
o]
n

47

2.7.3. Project Image

RCld w WIRELESS 9 g HMOTOR DR

-
D) ﬁé .‘
+% fa% 4

e w 5 B

2.7.4. Project Proposal

PicoBricks needs to be reset to be able to restart the game. You can develop your
project by asking the button to be pressed again to start the game again. You can
also have the highest score and the last scorer printed on the screen at the end of

the game.

2.7.5. Coding the Project with Microblocks

wihan starbad n PicoBsickn ludlon

mrhalee 12c {EITHEEREY address|hex) reaet purt N
hill:]

wTie RS At & ﬂ ¥ m VeI
writa §ETIRCCITE ot ¥ v B Invarsa

it LZEDH vt o LY v DN invanren
wart mancom RN to gy | millsees

PlcoBricks set red LED

wart urhl | PicoBricks bubion

==y i timer

Picogricks sct red LED

PiccEnoks beep m m3

har

wrie Y at x ﬂ ¥ g myEre

write ;Mg wclh at x ¥ m Invarsa

write IR ot « D v {0 nverse

write | jomn ey (score LD AR ot a [r €D

Click to access the project’s Microblocks codes.

48

PicoBricks Project Book

2.7.6. Micropython Codes of the Project

fromm machine import Pin, I2C,Timer
from picobricks import SSD1306_12C
import utime
import urandom
#define the library
WIDTH=128
HEIGHT=64
#define the width and height values
sda=machine.Pin(4)
scl=machine.Pin(5)
i2c=machine.l2C(0,sda=sda, scl=scl, freq=2000000)
oled= SSD1306_I2C(WIDTH, HEIGHT, i2c)
button = Pin(10,Pin.IN,Pin.PULL_DOWN)
led=Pin(7,Pin.OUT)
#define our input and output pins
while True:
led.value(0)
oled.fill(O)
oled.text(“press the button”,0,10)
oled.text(“TO START!",25,25)
oled.show()
#print “Press the button” and “TO START!” on the OLED screen
while button.value()==0:
pass
oled.fill(O)
oled.text(*Wait For LED"15,30)
oled.show()
#write “wait for LED" on the screen when the button is pressed
utime.sleep(urandom.uniform(1,5))
led.value(1)
timer_start=utime.ticks_ms()
#wait for a rondom second and turn on the led
while button.value()==0:
pass
timer_reaction=utime.ticks_diff(utime.ticks_ms(), timer_start)
pressed=True
oled.fill(O)
oled.text(“Your Time”",25,25)
oled.text(str(timer_reaction),50,50)

49

PicoBricks Project Book

oled.show()

led.value(0)

utime.sleep(1.5)

#print the score and “Your Time” to the screen when the button is pressed.

2.7.7. Arduino C Codes of the Project

#include <Wire.h>
#include “ACROBOTIC_SSD1306.h"
//define the library

int buzzer = 20;
int button =10;
int led =7,

int La = 440;

int old_time = 0;

int now_time = 0O;

int score = 0O;

String string_score;

//define our integer and string variables

void setup(){

// put your setup code here, to run once:
Wire.begin();
oled.init();
oled.clearDisplay();

pinMode(led,OUTPUT);
pinMode(buzzer,OUTPUT);
pinMode(button,INPUT);
Serial.begin(9600);
//[define the input and output pins

}

void loop(){

// put your main code here, to run repeatedly:
oled.setTextXY(3,0);
oled.putString(“Press the button”);
oled.setTextXY(5,4);

50

PicoBricks Project Book

oled.putString(“TO START");
if (digitalRead(button) ==1){
for (int i=3;i>0;i--){

String string_i = String(i);
oled.clearDisplay();
oled.setTextXY(4,8);
oled.putString(string_i);
delay(1000);

}

/lcount backwards from three

oled.clearDisplay();
oled.setTextXY(4,6);
oled.putString(“GoN!");

/forint “GO!I” on the OLED at x=4 y=6

int random_wait = random(1000, 5000);
delay(random_wait);
//wait for a random second between 1and 5

digitalWrite(led, HIGH);
old_time=millis();
/fturn on LED

while(!(digitalRead(button) == 1)){
now_time=millis();

score = now_time-old_time;
string_score = String(score);
//save score as string on button press

digitalWrite(led, HIGH);
tone(buzzer, La);

delay (200);
noTone(buzzer);

//turn on LED and buzzer

51

PicoBricks Project Book

oled.clearDisplay();

oled.setTextXY(1,4);

oled.putString(“Press the");

/Jprint “Press the” on the OLED at x=1Y=4
oled.setTextXY(2,3);

oled.putString(*“RESET BUTON");

/Jprint “RESET BUTTON" on the OLED at X=2 Y=3
oled.setTextXY(3,3);

oled.putString(“to Repeat!”);

/Jprint “To Repeat!” on the OLED at X=3 Y=3
oled.setTextXY(6,3);

oled.putString(“Score: “);
oled.setTextXY(6,9);
oled.putString(string_score);
oled.setTextXY(6,13);

oled.putString(* ms”);

Serial.println(score);

/Jprint score value to screen

delay(10000);

oled.clearDisplay();
//wait ten seconds and clear the screen

GitHub Show Your Reaction Project Page

http://rbt.ist/reaction

52

2.8. My Timer

Measuring time is a simple but important task that we do in our daily lives without
realizing it. A surgeon in surgery, a business person trying to catch up with a
meeting, an athlete trying to win, a student trying to finish an exam or a chess
match... Smart wrist watches, phones and even professional chronometers are used
to measure time. Time is a variable that should be used very accurately in electronic
systems. For example, a washing machine; how long the drum will rotate clockwise,
how much counterclockwise, how many seconds water must flow in order to dissolve
the detergent are tasks done by measuring time. To develop projects where time is
of the essence, you need to know how to use it.

In this project, you will make your own time measuring device using PicoBircks,
OLED display, button and potentiometer modules. A Timer...

2.8.1. Project Details and Algorithm

When PicoBricks starts, let's put a statement on the screen that introduces the
project and contains instructions. As the user turns the potentiometer, it will set a
time in the range of 0-60 Mminutes. When the user presses the button of Picobricks
after deciding the time with the potentiometer, it will start counting down in
minutes and seconds on the screen. If the button is pressed while the time is
running backwards, the Timer will stop and show the remaining time on the screen.
If the minute, second and second value reaches zero without pressing the button, a
notification stating that the time has expired will be displayed on the screen and the
program will be stopped.

2.8.2. Wiring Diagram

53

2.8.3. Construction Stages of the Project

|

]
ol
w
r
™

@

E
w

|

2.8.4. Project Proposal

You can add a beep to the start of the Timer. When the time is reset, you can give

different and high tone warnings with the buzzer and announce that the time is up
from afar.

2.8.5. Coding the Project with MicroBlocks

ot x I v BN wversa
wrne AT =t 2) v D
writs (ST &1 > KD

ropeat untl | PicoBricks button
mmalee Iscal tmer_m3 ba bmer

it EETRnE -t « I v i imeerae ot D o - | tmor me mod E RN
writa (CPIPSRPTITS ot v

wed FEED 1o DR - e e ool EEED R
alThna
O =
walt untl not PlcoBrices buttan Hmer ms mo< §ETETY BT

set P =) to

icho pralwndismwter Tecen | 408, DN) 1= ¢ i byt ol i min b <

ot S b0 Juin R win B
»

H lenpth of join) sec b <

setTimer zpace AF =@

et D o on @ == b

.3

write join min @ =cc @ msec
£ v B nvere

vt (GRS ot x 63 y €D Invarsa

Click to access the project’s Microblocks codes.

54

PicoBricks Project Book

2.8.6. MicroPython Codes of the Project

fromm machine import Pin, I12C, ADC, Timer #to acces the hardware picobricks
from picobricks import SSD1306_I12C #oled library

import utime #time library

WIDTH =128
HEIGHT = 64
#define the width and height values

sda=machine.Pin(4)

scl=machine.Pin(5)

#we define sda and scl pins for inter-path communication
i2c=machine.l2C(0,sda=sda, scl=scl, freq=1000000)#determine the frequency values

oled = SSD1306_12C(128, 64, i2c)

pot = ADC(Pin(26))

button = Pin(10,Pin.IN,Pin.PULL_DOWN)
#determine our input and output pins

oled.fill(O)
oled.show()
#Show on OLED

time=Timer()
time2=Timer()
time3=Timer()
#define timers

def minute(timer):
global setTimer
setTimer -=1

def second(timer):
global sec
sec-=1
if sec==-1:
sec=59
def msecond(timer):
global msec
msec-=1

55

PicoBricks Project Book

if msec==-1:
msec=99
#We determine the increments of the minute-second and millisecond values.
sec=59
msec=99

global setTimer

while button.value()==0:
setTimer=int((pot.read_ul16()*60)/65536)+1
oled.text(“Set timer:" + str(setTimer) + “ min",0,12)
oled.show()
utime.sleep(0.1)
oled fill(O)
oled.show()

#If the button is not pressed, the value determined by the potentiometer is printed
on the OLED screen.

setTimer-=1

time.init(mode=Timer.PERIODIC,period=60000, callback=minute)
time2.init(mode=Timer.PERIODIC,period=1000, callback=second)
time3.init(mode=Timer.PERIODIC,period=10, callback=msecond)
#We determine the periods of minutes, seconds and milliseconds.
utime.sleep(0.2)#wait for 0.2 second

while button.value()==0:
oled.text("min:" + str(setTimer),50,10)
oled.text("sec:” + str(sec),50,20)
oled.text("ms:" + str(msec),50,30)
oled.show()
utime.sleep(0.008)
oled.fill(O)
oled.show()
if(setTimer==0 and sec==0 and msec==99):
utime.sleep(0.1)
msec=0
break;

#When the button isO,oressed it prints the min-sec-ms values to the OLED screen in
the determined x and y coordinates.

oled.text(str(setTimer),60,10)

56

PicoBricks Project Book

oled.text(str(sec),60,20)
oled.text(str(msec),60,30)
oled.text(“Time is Over!”10,48)
oled.show()

#Print the minutes, seconds, milliseconds and “Time is Over” values to the Xand Y
coordinates determi

2.8.7. Arduino C Codes of the Project

#include <Wire.h>

#include “ACROBOTIC_SSD1306.h”"

//define the library

int minute;

int second = 59;

int milisecond =9;

int setTimer;

//define variables

void setup() {

// put your setup code here, to run once:
pinMode(10,INPUT);
pinMode(26,INPUT);

Wire.begin();
oled.init();
oled.clearDisplay();
//define the input-output pins and the oled Display

void loop() {
// put your main code here, to run repeatedly:
oled.setTextXY(1,2);
oled.putString(“<<My Timer>>");
oled.setTextXY(3,1);
oled.putString(“Please use the");
oled.setTextXY(4,1);
(
(
(

oled.putString(“Potantiometer”);
oled.setTextXY(5,0);
oled.putString(“to set the Timer”);

/lprint the “<<My Timer>>", “Please use the", “Potentiometer” and “to set the Timer."
to the x and y coordinates determinates on the OLED screen.

57

PicoBricks Project Book

delay(3000);
oled.clearDisplay();
//we waited three seconds and cleared

while(!(digitalRead(10) == 1))

{
setTimer = (analogRead(26)*60)/1023;
oled.setTextXY(3,1);
oled.putString(“set to:");
oled.setTextXY(3,8);
oled.putString(String(setTimer));
oled.setTextXY(3,11);
oled.putString(*min.");

//determine the min valuewith the potentiometer and print it on the screen until the
button is pressed.

}
oled.clearDisplay();
oled.setTextXY(1,1);
oled.putString(“The Countdown”);
oled.setTextXY(2,3);
oled.putString(“has begin!”);

/fprint the “The Countdown” and “has begin!” to the x and y coordinates
determlneted on the OLED screen

while(!(digitalRead(10) == 1))
{
milisecond = 9- (millis()%100)/10;
second = 59-(millis()%60000)/1000;
minute = (setTimer-1)-((millis()%360000)/60000);

oled.setTextXY(5,3);
oled.putString(String(minute));
oled.setTextXY(5,8);
oled.putString(String(second));
oled.setTextXY(5,13);
oled.putString(String(milisecond));
oled.setTextXY(5,)
oled.putString(“:
oled.setTextXY(5,1)
oled.putString(“");

//when the button is pressed, decrease the millisecond, second and minute values

58

PicoBricks Project Book

and write to the screen.
}

oled.setTextXY(5,3);
oled.putString(String(minute));
oled.setTextXY(5,8);
oled.putString(String(second));
oled.setTextXY(513);
oled.putString(String(milisecond));
oled.setTextXY(5,)
oled.putString(*:
oled.setTextXY(5,1)
oled.putString(“:");
delay(10000);

/Jprint the minute, second and millisecond values to the x and y coordinates
determined on the OLED screen

if (Mminute==0 & second==0 & milisecond==0){

oled.setTextXY(5,3);
oled.putString(String(minute));
oled.setTextXY(5,8);
oled.putString(String(second));
oled.setTextXY(513);
oled.putString(String(milisecond));
oled.setTextXY(5,)
oled.putString(*:
oled.setTextXY(5,1)
oled.putString(*“");
oled.putString(“-finished-");
oled.setTextXY(7,5);
delay(10000);

/fprint the minute, second, millisecond values and “-finisehd-" to the x and y
coordlnates determined on the OLED screen.

}

}
GitHub My Timer Project Page

59

2.9. Alarm Clock

Global warming is affecting the climate of our world worse every day. Countries take
many precautions and sign agreements to reduce the effects of global warming.
The use of renewable energy sources and the efficient use of energy is an issue

that needs attention everywhere, from factories to our rooms. Many reasons such

as keeping road and park lighting on in cities due to human error, and the use of
high energy consuming lighting tools reduce energy efficiency. Many electronic and
digital systems are developed and programmed by engineers to measure the light,
temperature and humidity values of the environment and ensure that they are used
only when needed and in the right amounts.

In this project, we will create a timer alarm that adjusts for daylight using the light
sensor in PicoBricks.

2.9.1. Project Details and Algorithm

In this project we will make a simple alarm application. The alarm system we will
design is designed to sound automatically in the morning. For this, we will use LDR
sensor in the project..At night, the OLED screen will display a good night message to
the user, in the morning, an alarm will sound with a buzzer sound, a good morning
message will be displayed on the screen, and the RGB LED wiill light up in white for
light notification. The user will have to press the button of PicoBricks to stop the
alarm. After these processes, which continue until the alarm is stopped, when the
button is pressed, the buzzer and RGB LED will turn off and a good day message wiill
be displayed on the OLED screen.

2.9.2. Wiring Diagram

o
s 1
=
X i
o
=
L
(= 4
x|
=
o
o
o
L+ |
X B
0
0
15 4

o anghuicy 1 Plialo]
Q
HE

60

2.9.3. Project Image

T 3371 90d

2.9.4. Project Proposal

You can improve the project by adding a melody as an alarm sound instead of a
beep. Or, instead of an alarm set according to daylight with the LDR sensor, you can
develop an alarm that sounds at the specified time, where the time information is
arranged via the button and OLED screen.

2.9.5. Coding the Project with MicroBlocks

S when PicoBricks light sensor (0-100) % > @3
‘when started .)

initialize i2c address{hex) reset pin# (i) Sl

flip ‘repeat uniil PicoBricks buftton

WS ot % Y @ ik I write at x m Y @ inverse
' PicoBricks set RGB LED color (@)

. PicoBricks beep ms

write at x @ y €D inverse

PicoBricks turn off RGB LED

wait @) millisecs

Click to access the project’s MicroBlocks codes.

2.9.6. Micropython Codes of the Project

from machine import Pin, 12C, ADC, PWM#to access the hardware on the pico
from picobricks import SSD1306_I2CH#OLED Screen Library

import utime

from picobricks import WS2812#ws8212 library

61

PicoBricks Project Book

#OLED Screen Settings
WIDTH =128
HEIGHT = 64

sda=machine.Pin(4)
scl=machine.Pin(5)
#initialize digital pin 4 and 5 as an OUTPUT for OLED Communication

i2c=machine.l2C(0,sda=sda, scl=scl, freq=1000000)

neo = WS2812(pin_num=6, num_leds=1, brightness=0.3)#initialize digital pin 6 as an
OUTPUT for NeoPixel

oled = SSD1306_I12C(WIDTH, HEIGHT, i2c)
ldr = ADC(Pin(27))#initialize digital pin 6 as an OUTPUT for NeoPixel

Bu&on = Pin(10,Pin.IN,Pin.PULL_DOWN)#initialize digital pin 10 as an INPUT for
utton

buzzer = PWM(PIin(20, Pin.OUT))#initialize digital pin 20 as an OUTPUT for buzzer
buzzer.freq(1000)

BLACK = (0, 0, 0)

WHITE = (255, 255, 255)

#RGB black and white color code
oled.fill(0O)

oled.show()

neo.pixels_fil(BLACK)
neo.pixels_show()

if Idr.read_ul16()<4000:
wakeup = True
else:
wakeup = False

while True:
while wakeup==False:

oled-fill(0)
oled.show()
oled.text("Good night”,25,32)
oled.show()
#Show on OLED and print “Good night”
utime.sleep(1)

62

PicoBricks Project Book

if Idr.read_ul16()<4000:
while button.value()==0:
oled fill(O)
oled.show()
oled.text(*Good morning”,15,32)
oled.show()

#Print the minutes, seconds, milliseconds and “Goog morning” values to the
Xand Y coordinates determined on the OLED screen.

neo.pixels_fill(WHITE)
neo.pixels_show()
buzzer.duty_ule(6000)
utime.sleep(1)
#wait for one second
buzzer.duty_ule(0)
utime.sleep(0.5)
#wait for half second
wakeup=True
neo.pixels_fill(BLACK)
neo.pixels_show()
oled.fill(O)
oled.show()
oled.text(*Have a nice day!",0,32)

#Print the minutes, seconds, milliseconds and “Have a nice day!” values to the X
and Y coordinates determined on the OLED screen.

oled.show()
if Idr.read_ul16()>40000:
wakeup= False

utime.sleep(1)

#wait for one second

2.9.7. Arduino C Codes of the Project

#include <Adafruit_NeoPixel.h>
#ifdef _AVR__

#include <avr/power.h>

#endif

#define PIN 6

#define NUMPIXELS 1
Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
#include <Wire.h>

63

PicoBricks Project Book

#include “ACROBOTIC_SSD1306.h"
int button;
void setup() {

Wire.begin();

oled.init();

oled.clearDisplay();

#if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
clock_prescale_set(clock_div_1);
#endif
pinMode(10,INPUT);
pinMode(27,INPUT);
pinMode(20,0UTPUT);

pixels.begin();
pixels.setPixelColor(0, pixels.Color(0O, O, O));
pixels.show();

void loop() {

oled.setTextXY(4,3);
oled.putString(“Good night”);

if (@analogRead(27)<200){
while(!(button ==1)){
button=digitalRead(10);

oled.setTextXY(4,2);

oled.putString(“Good morning”);
pixels.setPixelColor(0, pixels.Color(255, 255, 255));
pixels.show();

tone(20,494);

oled.clearDisplay/();

oled.setTextXY(4,1);

oled.putString(“Have a nice day”);
noTone(20);

pixels.setPixelColor(0, pixels.Color(0O, O, 0));

64

PicoBricks Project Book

pixels.show();
delay(10000);
}
}

GitHub Alarm Clock Project Page

http://rbt.ist/alarm

65

2.10. Know Your Color

LEDs are often used on electronic systems. Each button can have small LEDs next
to each option. By making a single LED light up in different colors, it is possible to
do the work of more than one LED with a single LED. LEDs working in this type are
called RGB LEDs. It takes its name from the initials of the color names Red, Green,
Blue. Another advantage of this LED is that it can light up in mixtures of 3 primary
colors. Purple, turquoise, orange...

In this project you will learn about the randomness used in every programming
language. We will prepare a enjoyable game with the RGB LED, OLED screen and
button module of Picobricks.

2.10.1. Project Details and Algorithm

The game we will build in the project will be built on the user knowing the colors
correctly or incorrectly. One of the colors red, green, blue and white will light up
randomly on the RGB LED on PicoBricks, and the name of one of these four colors
will be written randomly on the OLED screen at the same time. The user must press
the button of PicoBricks within 1.5 seconds to use the right of reply. The game wiill
be repeated 10 times, each repetition will get 10 points if the user presses the button
when the colors match, or if the user does not press the button when they do not
match. If the user presses the button even though the colors do not match, he will
lose 10 points. After ten repetitions, the user’s score will be displayed on the OLED
screen. If the user wishes, he may not use his right of reply by not pressing the
button.

2.10.2. Wiring Diagram

X
a3
x
=
a
i
x
T
5 &
1
T
]
1
g
5 b
i
|
i
)

66

2.10.3. Project Image

@ T o e

T

R o

2.10.4. Project Proposal

= E:.':J'Iﬂ_._

B
()
a
=
o
E
-
v
il
m
c

You can make the game more enjoyable by making it a little more difficult. For
example, you can speed up the game by reducing the repetition time of the colors.
Or, instead of losing points when the user presses the button in the wrong place, you

can finish the game and start it again.

2.10.5. Coding the Project with MicroBlocks

flne chech_Budlon

when started racat timar

itioize 12 {EINERES vudrassina (SR rezat pire)
- hasty > rapant undll timar >= R
ip

PlecBricks hem off RGE LED

% ot x Iy Invarsa

I PlcoEricks bution and | timer | <= EEER

W randomGColorkds = randomGoloriamelds
change EZLED by
et CECEEEIIL)
s
change By
sot EEEERIE) o

Ak

else f | not PicoBricks button | and - timer | == EEER

N randomGCalorids = | randomEolomameds
change EZLED by
sct fQEEEE-FRE to
oo
change By
sct LTERECTRE to

L1
Ar
L3

67

detine random calor

o TR . =i) v

Ibaw rondosnColorNomaldy of

st AT R TR T
=4 QLU LIRS

Itam rondoenColords of

:ki wel REE LED cokn | REE elon

s
il | exenbmene =t = 0 ¢ I irremeun

PicoBricks Project Book

Click to access the project’s MicroBlocks codes.

2.10.6. MicroPython Codes of the Project

fromm machine import Pin, 12C

from picobricks import SSD1306_12C
import utime

import urandom

import _thread

from picobricks import WS2812

WIDTH =128

HEIGHT = 64

sda=machine.Pin(4)

scl=machine.Pin(5)

i2c=machine.l2C(0,sda=sda, scl=scl, freg=1000000)

ws = WS2812(pin_num=6, num_leds=1, brightness=0.3)

oled = SSD1306_I2C(WIDTH, HEIGHT, i2¢)

button = Pin(10,Pin.IN,Pin.PULL_DOWN)
RED = (255, 0, O)

GREEN = (0, 255, 0)

BLUE = (0, 0, 255)

WHITE = (255, 255, 255)

BLACK = (0, O, O)

oledfill(0)
oled.show()

ws.pixels_fill(BLACK)
ws.pixels_show()

global button_pressed
score=0
button_pressed = False

def random_rgb():

global ledcolor
ledcolor=int(urandom.uniform(1,4))

68

PicoBricks Project Book

if ledcolor ==1:
ws.pixels_fil(RED)
ws.pixels_show()
elif ledcolor == 2:
ws.pixels_fil(GREEN)
ws.pixels_show()
elif ledcolor == 3:
ws.pixels_fil(BLUE)
ws.pixels_show()
elif ledcolor == 4:
ws.pixels_fil (WHITE)
ws.pixels_show()

def random_text():

global oledtext

oledtext=int(urandom.uniform(1,4))

if oledtext ==1:
oled.fill(0)
oled.show()
oled.text(*RED",45,32)
oled.show()

elif oledtext == 2:
oled.fill(0)
oled.show()
oled.text("GREEN"45,32)
oled.show()

elif oledtext == 3:
oled.fill(0)
oled.show()
oled.text(“BLUE",45,32)
oled.show()

elif oledtext == 4:
oled.fill(0)
oled.show()
oled.text(*"WHITE",45,32)
oled.show()

def button_reader_thread():
while True:
global button_pressed
if button_pressed == False:

69

PicoBricks Project Book

if button.value() ==1:
button_pressed = True
global score
global oledtext
global ledcolor
if ledcolor == oledtext:

score +=10
else:
score -=10

utime.sleep(0.01)
_thread.start_new_thread(button_reader_thread, ())

oled.text(“The Game Begins”,0,10)
oled.show()
utime.sleep(2)

foriin range(10):
random_text()
random_rgb()
button_pressed=False
utime.sleep(1.5)
oled fill(O)
oled.show()
ws.pixels_fil(BLACK)
ws.pixels_show()
utime.sleep(1.5)
oledfill(0)
oled.show()
oled.text(“Your total score:”,0,20)
oled.text(str(score), 30,40)
oled.show()

2.10.7. Arduino C Codes of the Project

#include <Adafruit_NeoPixel.h>

#define PIN 6

#define NUMPIXELS 1

Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
#define DELAYVAL 500

70

PicoBricks Project Book

#include <Wire.h>

#include “ACROBOTIC_SSD1306.h" //define libraries
int OLED_color;

int RGB_color;

int score = 0O;

int button = 0O;

void setup() {
// put your setup code here, to run once:
Wire.begin();
oled.init();
oled.clearDisplay();

pixels.begin();
pixels.clear();
randomSeed(analogRead(27));

void loop() {
// put your main code here, to run repeatedly:
oled.clearDisplay();
oled.setTextXY(3,1);
oled.putString(“The game begins”);
pixels.setPixelColor(0, pixels.Color(0O, O, O));
pixels.show();
delay(2000);
oled.clearDisplay();

for (int i=0;i<10;i++){
button = digitalRead(10);
random_color();
pixels.show();
unsigned long start_time = millis();
while (button == 0) {
button = digitalRead(10);
if (millis() - start_time > 2000)
break;

A

PicoBricks Project Book

}
if (button ==1){

if(OLED_color==RGB_color){
score=score+10;

}

if(OLED_color!=RGB_color){
score=score-10;

}
delay(200);

}

oled.clearDisplay();

pixels.setPixelColor(0, pixels.Color(0O, O, O));
pixels.show();

String string_scrore=String(score);
oled.clearDisplay();
oled.setTextXY(2,5);
oled.putString(“Score:);
oled.setTextXY(4,7);
oled.putString(string_scrore);
oled.setTextXY(6,5);
oled.putString(“points”);

// print final score on OLED screen

delay(10000);

void random_color(){

OLED_color = random(1,5);
RGB_color = random(1,5);
/| generate numbers between 1and 5 randomly and print them on the screen
if (OLED_color ==1){
oled.setTextXY(3,7);
oled.putString(“red”);
}
if (OLED_color == 2){
oled.setTextXY(3,0);
oled.putString(“green”);

72

PicoBricks Project Book

}
if (OLED_color == 3){

oled.setTextXY(3,06);
oled.putString(“blue”);

}
if (OLED_color == 4){

oled.setTextXY(3,0);
oled.putString(“white");

}
if (RGB_color ==1){
pixels.setPixelColor(0O, pixels.Color(255, O, 0));

}
if (RGB_color == 2){
pixels.setPixelColor(0O, pixels.Color(0, 255, 0));

}
if (RGB_color == 3){
pixels.setPixelColor(0O, pixels.Color(0, O, 255));

}
if (RGB_color == 4){
pixels.setPixelColor(0O, pixels.Color(255, 255, 255));

GitHub Know Your Color Project Page

http://rbt.ist/color

73

2.11. Magic Lamp

Project Author: Abdullah KAYA

Most of us have seen lamps flashing magically or doors opening and closing with the
sound of clapping in movies. There are set assistants who close these doors and turn
off the lamps in the shootings. What if we did this automatically? There are sensors
that convert the sound intensity change that we expect to occur in the environment
into an electrical signal. These are called sound sensors.

2.12.1. Project Details and Algorithm

In this project, we will turn the LED module on the PicoBricks board on and off

with the sound. In our project, which we will build using the PicoBricks sound level
sensor, we will perform the on-off operations by making a clap sound. As in previous
projects, in projects where sensors are used, before we start to write the codes, it
will make your progress easier to see what values the sensor sends in the operations
we want to do by just running the sensor, and then writing the codes of the project
based on these values.

2.12.2. Wiring Diagram

SRR BT

0
x
x
x
x|
o
= 4
X |
o |
X
& 4
X
x
X !
L* 4
o

20 03

2.11.3. Construction Stages of the Project

During the construction of the project, two wire sockets and sockets were used. The
two ends, which were cut by cutting the phase cable, were connected to the relay.
You should pay attention to the insulation with electrical tape so that a dangerous
situation does not occur when you cut the other wire. If you use a three-wire socket,
you must cut the brown wire with the phase lead and connect it to the relay.

74

)
7\

a

2.11.4. Project Proposal

You can present the player with instructions and notifications on the OLED screen.
In addition, you can prepare a more exciting game by showing on the OLED screen
how many milliseconds after the game starts, the game is over.

2.11.5. Coding the Project with MicroBlocks

when started

S status W

Code to test the Sound Sensar
comment Click on it to run.

(i Open the Graph Window to see the action.
when read digital pin m 3 s B

set §acifER) to not | status

graph read digital pin @B} b P

PicoBricks set red LED status

PicoBricks set relay status

~ wait @) millisecs

Click to access the project’s MicroBlock codes.

2.11.6. MicroPython Codes of the Project
from machine import Pin

sensor=Pin(16,Pin.IN)

relay=Pin(12,Pin.OUT)

x=0

while True:

75

PicoBricks Project Book

if sensor.value()==0:
if x==0:
relay.value(l)
x=1
else:
relay.value(O)
x=0

2.11.7. Arduino C Codes of the Project

void setup() {
// put your setup code here, to run once:
pinMode(1,INPUT);
pinMode(7,0UTPUT);
//[define the input and output pins
}

void loop() {
// put your main code here, to run repeatedly:

Serial.printIn(digitalRead(1));

if(digitalRead(1)==1){
digitalWrite(7,HIGH);
delay(3000);

}

elsef
digitalWrite(7,LOW);
delay(1000);

}
}

GitHub Magic Lamp Project Page
[lbn A

http://rbt.ist/lamp

76

2.12. Smart Cooler
Project Author: Abdullah KAYA

Air conditioners are used to cool in the summer and warm up in the winter. Air
conditioners adjust the degree of heating and cooling according to the temperature
of the environment. While cooking the food, the ovens try to rise to the temperature
value set by the user and maintain that temperature. These two electronic devices
use special temperature sensors to control the temperature. In addition, temperature
and humidity are measured together in greenhouses. In order to keep these two
values in balance at the desired level, it is tried to provide air flow with the fan.

In PicoBricks, you can measure temperature and humidity separately and interact
with the environment with these measurements. In this project, we will prepare

a cooling system that automatically adjusts the fan speed according to the
temperature with PicoBricks. In this way, you will learn the DC motor operating
system and motor speed adjustment.

2.12.1. Project Details and Algorithm

In our project, we will firstly display the temperature values measured by the DHT11
temperature and humidity sensor on Picobricks. Then, we will define a temperature
limit and write the necessary codes for the DC motor connected to PicoBricks to
start rotating when the temperature value from the DHTI11 module reaches this limit,
and for the DC motor to stop when the temperature value falls below the limit we
have determined.

2.12.2. Wiring Diagram

slsleialels)

e

T

e
ns .
3y =8
™ L
| & :
t'O c
|

77

2.12.3. Project Image

2.12.4. Project Proposal

Using the OLED screen on PicoBricks, you can print the temperature on the screen
and keep track the temperature at which the fan is activated.

PicoBricks has a modular structure, modules can be separated by breaking and
can be used by connecting to Pico board with grove cables. By mounting the
smart cooling circuit we made in our project to the robot car chassis, you can
develop a project that navigates autonomously in your environment and cools the
environment at the same time.

2.12.5. Coding the Project with MicroBlocks

when started o

forever

if PicoBricks temperature ("C} >= @
say PicoBricks temperature (°C} p

wait QD) millisecs PicoBricks set motor {{IE) speed §[I (-100 to 100)

PicoBricks set motor speed @ (-100 to 100)

Click to access the project's MicroBlock codes.

78

PicoBricks Project Book

Project Codes:

fromm machine import Pin
from picobricks import DHTT1
import utime

LIMIT_TEMPERATURE = 20 #define the limit temperature

dht_sensor = DHT11(Pin(11, Pin.IN, Pin.PULL_DOWN))
m1 = Pin(21, Pin.OUT)

m1.low()

dht_read_time = utime.time()

#define input-output pins

while True:
if utime.time() - dht_read_time >= 3:
dht_read_time = utime.time()
dht_sensor.measure()
temp= dht_sensor.temperature
print(temp)
if temp >= LIMIT_TEMPERATURE:
m1.high()
#operate if the room temperature is higher than the limit temperature
else:
m1.low()

2.12.7. Arduino C Codes of the Project
#include <Wire.h>

#tdefine LIMIT_TEMPERATURE 27

float temp;

void dc(int dcNumber, int speed, int direction){
Wire.beginTransmission(0x22);
Wire.write(Ox26);
Wire.write(dcNumber);
Wire.write(speed);,

79

PicoBricks Project Book

Wire.write(direction);

int cs = dcNumber A speed A direction;
Wire.write(cs);
Wire.endTransmission();

void shtc_init(){
Wire.beginTransmission(0Ox70);
Wire.write(Ox35);
Wire.write(0x17);
Wire.endTransmission();
delay(500);
Wire.beginTransmission(0Ox70);
Wire.write(OXEF);
Wire.write(OxC8);
Wire.endTransmission();
delay(500);
Wire.requestFrom(0x70, 3);

float temperature(){

int rcvl =0;
intrcv2 =0;
Wire.beginTransmission(0Ox70);
Wire.write(Ox78);
Wire.write(Ox66);
Wire.endTransmission();
delay(100);
Wire.requestFrom(0x70, 2);
while(Wire.available()) {

rcvl = Wire.read();

rcv2 = Wire.read();
}
delay(100);
float temp = (((4375 * ((revl << 8) | rcv2)) >>14) - 4500) /100;
return temp;

}

void setup() {
Serial.begin(115200);
shtc_init();

80

2.13. Buzz Wire Game

Projects don't always have to be about solving problems and making things easier.
You can also prepare projects to have fun and develop yourself. Attention and
concentration are features that many people want to develop. The applications that
we can do with this are quite interesting. How about making Buzz Wire Game with
PicoBricks?

You must have heard the expression that computers work with Os and 1s. O
represents the absence of electricity and 1 represents its presence. O and 1I's come
together with a certain number and sequence of combinations to form meaningful
data. In electronic systems, Os and 1s can be used to directly control a situation. Is the
door closed or not? Is the light on or off? Is the irrigation system on or not? In order
to obtain such information, a status check is carried out.

In this project, we will electronically prepare the attention and concentration
developer Buzz Wire Game with the help of a conductor wire using the buzzer and
LED module with PicoBricks. While preparing this project, you will have learned an
input technique that is not a button but will be used like a button.

2.13.1. Project Details and Algorithm

To prepare the project, you need 2 male-male jumper cables and a 15 cm long
conductor bendable wire. When the player is ready, it will be asked to press the
button to start the game. If the jumper cable touches the conductor wire in the
player's hand when the button is pressed, PicoBricks will detect this and give an
audible and written warning. The time from the start of the game to the end wiill also
be displayed on the OLED screen.

We reset the timer after the user presses the button. Then we will give a voltage of
3.3V to the conductor wire connected to the GPIOT1 pin of PicoBricks. One end of
the cable held by the player will be connected to the GND pin on the Picobricks. If
the player touches the jumper cable in his hand to the conductive wire, the GPIOI
pin will drop to the Passive/Off/0 position. Then, it will announce that the game is
over, and there will be light, written and audio feedback, then the elapsed time wiill
be shown on the OLED screen in milliseconds. After 5 seconds, the player will be
prompted to press the button to restart.

81

2.13.2. Wiring Diagram

MR
o

o e] 'I |
Bosghury Ple 10 | i - "
4 I
s
o . ._ R l. s

2.13.3. Project Proposal

You can make physical and software improvements to the project. By covering the
start and end points with insulating tape, you can prevent the player from having
problems starting and finishing the game. In terms of software, when the player
brings the cable to the other end without touching the wire, press the button and
you can see the score on the OLED screen.

2.13.4. Coding the Project with MicroBlocks

when started

Initialize 12¢ address(hex) €8 reset pinz)
fip
forever
PicoBricks set red LED
write at x B ¥ u inverse
. write at x Q Yy m inverse
. write at x @ ¥y @ inverse

wait until PicoBricks button

write al x @ ¥ m inverse
write at x ¥ @ inverse
set digital pin) to

veset thimer

wait unfil not read digital pin @ p

 wite YD =t x € y € inverse
write join fime @ P atx @ ¥ @ inverse

PicoBricks set red LED

PicoBricks beep €0 ms

wait §lG) millisecs

82

Click to access the codes of the project.
2.13.5. Construction Stages of the Project
Along with the PicoBricks base Kit,

1: 2 20 cm male-male jumper cables. One end of the cable to be attached to the GND
will be stripped 4-5 cm and made into a ring.

2:15-20 cm conductive wire with a thickness of 0.8 mm. Prepare your materials.

Bend the conductor wire on the protoboard as you wish and pass it through the
holes, before passing one end, you must pass the male end, which is connected to
the GND pin on the PicoBoard, the other end of the cable you have made into a ring.

I)
h

3: Conductor Wire

4: Jumper cable with one end connected to the GND pin with a looped end.

AR Heto Worla

5: One end of the jumper cable, which has both male ends, into the hole right next to
the end of the conductive wire you placed on the protoboard

6: Twist the end of the jumper wire and the end of the conductor wire together
under the protoboard.

83

a

7: Bend the other end of the conductor wire placed on the protoboard so that it does
not come out.

8: Connect the other male end of the jumper cable that you wrapped around the
end of the conductor wire in step 6 to the pin no. GPIO1 on the Picoboard

If you have completed the installation, you can start the game after installing the
codes. Have fun.:)

84

PicoBricks Project Book

2.13.6. MicroPython Codes of the Project

fromm machine import Pin, I12C, Timer #to access the hardware on the pico
from picobricks import SSD1306_12C #OLED Screen Library
from utime import sleep # time library

#OLED Screen Settings
WIDTH =128
HEIGHT = 64

sda=machine.Pin(4)#initialize digital pin 4 and 5 as an OUTPUT for OLED
Communication

scl=machine.Pin(5)
i2c=machine.l2C(0,sda=sda, scl=scl, freq=1000000)
oled = SSD1306_I12C(WIDTH, HEIGHT, i2c)

wire=Pin(1,Pin.OUT)#initialize digital pin 1Tas an OUTPUT

led = Pin(7,Pin.OUT)#initialize digital pin 7 and 5 as an OUTPUT for LED
buzzer=Pin(20, Pin.OUT)#initialize digital pin 20 as an OUTPUT for Buzzer
button=Pin(10,Pin.IN,Pin.PULL_DOWN)#initialize digital pin 10 as an INPUT for button
endtime=0

while True:
led.low()
oled.fill(O)
oled.show()
oled.text(“<BUZZ WIRE GAME>",0,0)
oled.text("Press the button”,0,17)
oled.text(“TO START!",25,35)
oled.show()
#When button is ‘O, OLED says ‘GCAME STARTED’
while button.value()==0:

print(“press the button”)

oled. fill(O)
oled.show()
oled.text("GAME",25,35)
oled.text("STARTED",25,45)
oled.show()
wire.high()
timer_start=utime.ticks_ms()

85

PicoBricks Project Book

#When wire is ‘T, OLED says ‘GAME OVER’
while wire.value()==1:

print(“Started”)
endtime=utime.ticks_diff(utime.ticks_ms(), timer_start)
print(endtime)
oled fill(O)
oled.show()
oled.text("GAME OVER!",25,35)
oled.text(endtime + “ms” ,25,45)
oled.show()
led.high()#LED On
buzzer.high()J#Buzzer On
sleep(5)#Delay

2.13.7. Arduino C Codes of the Project

#include <Wire.h>
#include “ACROBOTIC_SSD1306.h"

int Time=0;
unsigned long Old_Time=0;

void setup() {

pinMode(20,0UTPUT);
pinMode(7,0UTPUT);

pinMode(1,O0UTPUT);
pinMode(10,INPUT);

Wire.begin();
oled.init();
oled.clearDisplay();

#if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
clock_prescale_set(clock_div_1);
#endif

}

void loop() {

86

PicoBricks Project Book

digitalWrite(7,LOW);

oled.setTextXY
oled.putString
oled.setTextXY(4
oled.putString(“Press Button”);
oled.setTextXY(5,3);
oled.putString(“TO START!);

2,1);
BUZZ WIRE GAME");
2);

(
("
(4,
("
(5
("
while (!(digitalRead(10)==1)){

oled.clearDisplay();
oled.setTextXY(3,06);
oled.putString(“GAME");
oled.setTextXY(5,4);
oled.putString(“STARTED");

digitalWrite(1,HIGH);
Old_Time=millis();

while(!(digitalRead(1)==0)){

Time=millis()-Old_Time;

}
String(String_Time)=String(Time);

oled.clearDisplay();
oled.setTextXY(3,4);
oled.putString(“GAME OVER");
oled.setTextXY(5,4);
oled.putString(String_Time);
oled.setTextXY(5,10);
oled.putString(*ms”);
digitalWrite(7,HIGH);
digitalWrite(20,HIGH);
delay(500);
digitalWrite(20,LOW);

87

PicoBricks Project Book

delay(5000);

Time=0;

Old_Time=0;

oled.clearDisplay();
}

GitHub Buzz Wire Game Project Page

http://rbt.ist/buzzwire

88

2.14. Dinosaur Game

If the electronic systems to be developed will fulfill their duties by pushing, pulling,
turning, lifting, lowering, etc., pneumatic systems or electric motor systems are used
as actuators in the project. PicoBricks supports two different engine types so that
you can produce systems that can activate the codes you write in your projects.

DC motor and Servo motors in which the movements of DC motors are regulated
electronically. Servo motors are motors that rotate to that angle when the rotation
angle value is given. In RC boats, servo motors are used with the same logic to
change the direction of the vehicle. In addition, advanced servo motors known as
smart continuous servos, which can rotate full-round, are also used in the wheels of
the smart vacuum cleaners we use in our homes.

In this project you will learn how to control Servo motors with PicoBricks.

2.14.1. Project Details and Algorithm

While writing the project codes, we will first fix the LDR sensor on the computer
screen and read the sensor data on the white and black background, then write the
necessary codes for the servo motor to move according to these data.ln this project,
we will automatically play Google Chrome offline dinasour game to picobricks. In the
game, Picobricks will automatically control the dinosaur’'s movements by detecting
obstacles. We will use the picobricks LDR sensor to detect the obstacles in front

of the dinosaur during the game. LDR can send analog signals by measuring the
amount of light touching the sensor surface. By fixing the sensor on the computer
screen, we can detect if there is an obstacle in front of the dinosaur by taking
advantage of the difference in the amount of light between the white and black
colors. When an obstacle is detected, we can use a servo motor to automatically
press the spacebar on the keyboard. In this way, the dinosaur will easily overcome
the obstacles. While writing the project codes, we will firstly fix the LDR sensor on the
computer screen and read the sensor data on the white and black background, then
write the necessary codes for the servo motor to move according to these data.

89

2.14.2. Wiring Diagram

Note: There are triple pins on the right and left side of the motor driver grove cable
entry and these pins are short-circuited with 2 jumpers. When using a DC motor,
the jumper that should be attached on the DC motor side should be removed when
using a servo motor and attached to the servo side.

"

rd

I*ﬂ

elelelele]
i

.
e g .

HY,
o)

UiUiF

o
o

®

90

PicoBricks Project Book

2.14.4. Project Proposal

At first in the game, the ground color is white and the figures are black. After a
certain stage, the colors are reversed. For this reason, LDR sensor data is changing.
To solve this problem, you can use variables and functions to run one code group
when the game is on a white background, another code group when it is on a black
background, or you can install a second LDR sensor to detect this difference.

PicoBricks and its modules allow us to develop many projects from simple to
complex. You can also use it in different games such as minecraft by developing this

project, which we automatically play a computer game that we play in daily life on
Picobricks.

2.14.5. Coding the Project with MicroBlocks

when PicoBricks light sensor (0-100) % < @

PicoBricks set servo m to @ degrees(-90 to 90)

""ENE 100 M EEES

PicoBricks set servo m fo Q degrees(-90 to 90)

wait @ millisecs

Click to access the codes of the project.

2.14.6. MicroPython Codes of the Project
from machine import Pin, ADC, PWM, [2C#to access the hardware on the pico
from utime import sleep #time library

from picobricks import MotorDriver

i2c = 12C(0, scl=Pin(5), sda=Pin(4)) # Init 12C using pins
motor = MotorDriver(i2c)

ldr=ADC(27) #initialize digital pin 27 for LDR
motor.servo(1,0) # sets position to O degrees

91

PicoBricks Project Book

while True:

sleep(0.01)

#When LDR data higher than 40000

if Idr.read_ul16()>4000:
motor.servo(1,180)# sets position to 180 degrees
sleep(0.1)#delay
motor.servo(1,0) # sets position to O degrees
sleep(0.5)#delay

2.14.7. Arduino C Codes of the Project

#include <Wire.h>

void servo(int servonumber,int angle){
Wire.beginTransmission(0x22);
Wire.write(0x26);
Wire.write(servonumber + 2);
Wire.write(0x00);
Wire.write(angle);
int cs = (servonumber + 2) A angle;
Wire.write(cs);
Wire.endTransmission();

}

void setup() {
pinMode(27,INPUT);
servo(1,0);

}

void loop() {
int light_sensor=analogRead(27);

if(light_sensor>100){
servo(1,180);
delay(100);
servo(1,0);
delay(500);

}
}

—~ o~ — o~

92

PicoBricks Project Book

GitHub Dinosaur Game Project Page

http://rbt.ist/dinosaur

93

2.15. Night and Day

How about playing the Night and Day game you played at school electronically?The
game of night and day is a game in which we put our head on the table when our
teacher says night, and raise our heads when our teacher says day. This game will be
a game that you will use your attention and reflex. In this project, we will use a 0.96"
128x64 pixel 12C OLED display. Since OLED screens can be used as an artificial light
source, you can enlarge the characters on the screen using lenses and mirrors and
reflect them on the desired plane. Systems that can reflect information, road and
traffic information on smart glasses and automobile windows can be made using
OLED screens.

Light sensors are sensors that can measure the light levels of the environment they
are in, also called photodiodes. The electrical conductivity of the sensor exposed

to light changes. We can control the light sensor by coding and develop electronic
systems that affect the amount of light.

2.15.1. Project Details and Algorithm

First we will ask the player to press the button to start the game. Then we will make
the OLED screen of PicoBricks display NIGHT and DAY randomly for 2 seconds each.
The player should cover the LDR sensor with his hand within 2 seconds if the word
written on the OLED screen is NIGHT, and if the word DAY is written on the OLED
screen, the player should raise his hand over the LDR sensor. Each correct response
of the player will earn 10 points. In case of wrong response, the game will be over
and there will be a written statement on the screen stating the end of the game, a
different tone will sound from the buzzer, and the score information will be displayed
on the OLED screen. If the player gives a total of 10 correct responses and gets 100
points, the phrase “Congratulation” will be displayed on the OLED screen and the
buzzer will play notes in different tones.

94

2.15.2. Wiring Diagram

-
D'g
b
I
o
o)

il

5T,

i'ﬂiﬂ

mists
0

TRlahk snd Doud

i P oy o

4

=

AT T

95

<

a
2.15.4. Project Proposal

You can develop the project by taking the values that the LDR sensor sends to the
project according to the environment you are in, and automatically determining the
limit to be processed according to the sensor value in the game, that is, by adding
LDR sensor value calibration codes. You can add difficulty level to the game. With the
potentiometer, the difficulty level can be selected as easy, medium and hard. When
easy is selected, the change time for words can be 2 seconds, 1.5 seconds when
medium is selected, 1 second when hard is selected.

2.15.5. Coding the Project with MicroBlocks

when =ared

Iniciaiize e EIETNIRTES acdracshax) 455 resat ping IEN
Mip

clanr

vente (FETIETIESS ot « @ » @ meerse

vorita IR ot v BN Invarsa

vnte: at 2 IER v) v

warta ot o ¥ BN Invarsa

= T - ©

sut o ISy

vemsl unld PaoBhiichy buallan

whain TR rocalnad

change EZE0 v (D

sbop bhis 1nsk

sat 10 mando ta
il Ly ¥ ranciom 5 to B i
It mightorday = fER wr e at x v {ED Imecrse
wriE o EE v P reerae write | Join score b ot G v 0 Inwverse

eise

write (T ot = B nvers: ol ul = I v I e
Ak warhe =g dodlp at x a T Inwerss:
=hop Hhiks task PicsBaricks lup m ms

et IO o i

wait uhl PicoBricks bubion
when score = T =t €D “g

= -m‘l L
2=t €D -)

wie PR ELEy ot = @I v {IN nvers=

wite | jon e score b at s By B ivere

wirba JREEISINamE T ad x m Y m Irarsa
wiie QLR =1l at 2 ¥ a2 invers=
ety Fita cotava IER tor ED me
pay nate (Y cotwes M8 tor ED =
pikary vt (P cctana MEDN bor ETH ns

il nighlenley = geesiReaction
broodcost RERTCTR

wamil undil Pz Bicha bBullan

Click to access the codes of the project.

2.15.6. MicroPython Codes of the Project

from machine import Pin, 12C, Timer, ADC, PWM
from picobricks import SSD1306_12C

import utime

import urandom

#define the libraries

96

PicoBricks Project Book

WIDTH =128
HEIGHT = 64
#OLED Screen Settings
sda=machine.Pin(4)
scl=machine.Pin(5)
#initialize digital pin 4 and 5 as an OUTPUT for OLED Communication
i2c=machine.l2C(0,sda=sda, scl=scl, freq=1000000)
oled = SSD1306_I12C(WIDTH, HEIGHT, i2c)
buzzer = PWM(Pin(20))
buzzer.freq(440)
ldr=ADC(Pin(27))
button=Pin(10,Pin.IN,Pin.PULL_DOWN)
#define the input and output pins
oled.text(“NIGHT and DAY", 10, O)
oled.text(“<CAME>", 40, 20)
oled.text(“Press the Button”, O, 40)
oled.text(“to START!", 40, 55)
oled.show()
#OLED Screen Texts Settings
def changeWord():
global nightorday
oled.fill(O)
oled.show()
nightorday=round(urandom.uniform(0O,1))
#when data is ‘O’, OLED texts NIGHT
if nightorday==0:
oled.text("---NIGHT---", 20, 30)
oled.show()
else:
oled.text(“---DAY---", 20, 30)
oled.show()
#waits for the button to be pressed to activate

while button.value()==0:
print(“Press the Button”)
sleep(0.01)

oled.fill(O)
oled.show()
start=1
global score

97

PicoBricks Project Book

score=0
while start==1:
global gamerReaction
global score
changeWord()
startTime=utime.ticks_ms()
#when LDR’s data greater than 2000, gamer reaction ‘O’
while utime.ticks_diff(utime.ticks_ms(), startTime)<=2000:
if Idr.read_ul16()>20000:
gamerReaction=0
#when LDR’s data lower than 2000, gamer reaction ‘T
else:
gamerReaction=1
sleep(0.01)
#buzzer working
buzzer.duty_ul6(2000)
sleep(0.05)
buzzer.duty_ul6(0)
if gamerReaction==nightorday:
score +=10
#when score is 10, OLED says ‘Game Over’
else:
oled.fill(O)
oled.show()
oled.text("Game Over”, 0,18, 1)
oled.text(“Your score “ + str(score), 0,35)
oled.text(“Press RESET",0, 45)
oled.text(“To REPEAT",0,55)
oled.show()
buzzer.duty_ul6(2000)
sleep(0.05)
buzzer.duty_ul6(0)
break;
if score==100:
#when score is 10, OLED says “You Won'
oled.fill(O)
oled.show()
oled.text(“Congratulation”, 10, 10)
oled.text(“Top Score: 100", 5, 35)
oled.text(“Press Reset”, 20, 45)
oled.text(“To REPEAT", 25,55)

98

PicoBricks Project Book

oled.show()
buzzer.duty_ul6(2000)
sleep(0.1)
buzzer.duty_ul16(0)
sleep(0.1)
buzzer.duty_ul6(2000)
sleep(0.1)
buzzer.duty_ul16(0)

break;
2.15.7. Arduino C Codes of the Project

#include <Wire.h>
#include “ACROBOTIC_SSD1306.h"

//define the library

#define RANDOM_SEED_PIN 28
int Gamer_Reaction = 0;

int Night_or_Day = 0;

int Score = 0O;

int counter=0;

double currentTime = 0O;
double lastTime = 0O;
double getlLastTime(){
return currentTime = millis()/1000.0 - lastTime;

void _delay(float seconds) {
long endTime = millis() + seconds * 1000;
while(millis() < endTime) _loop();

}

void _loop() {
}

void loop() {

_loop();
}

99

PicoBricks Project Book

void setup() {
// put your setup code here, to run once

pinMode(10,INPUT);
pinMode(27,INPUT);
pinMode(20,0UTPUT);
randomSeed(RANDOM_SEED_PIN);
Wire.begin();

oled.init();

oled.clearDisplay();

oled.clearDisplay();
oled.setTextXY(1,3);
oled.putString(“NIGHT and DAY");
oled.setTextXY(2,7);
oled.putString(“GAME");
oled.setTextXY(5,2);
oled.putString(“Press BUTTON!");
oled.setTextXY(6,4);
oled.putString(“to START!");

Score = 0;

while(!(digitalRead(10) == 1))
{
_loop();

}
_delay(0.2);

while(1){ //while loop
if (counter==0){

delay(500);
Change_Word();
lastTime = millis()/1000.0;

while(!(getLastTime() > 2))

{
Serial.printIn(analogRead(27);

100

PicoBricks Project Book

if(analogRead(27) > 500){
Gamer_Reaction = 0;
lelse{
Gamer_Reaction =1,
}
}

//determine the gamer reaction based on the value of the LDR sensor
digitalWrite(20,HIGH); //turn on the buzzer
delay(250);
digitalWrite(20,LOW); //turn off the buzzer

if(Night_or_Day == Gamer_Reaction){
Correct();

lelse{
Wrong();

} _loop();

if(Score==100){
oled.clearDisplay();
oled.setTextXY(1,1);
oled.putString(“Congratulation”);
oled.setTextXY(3,1);
oled.putString(“Your Score: *);
oled.setTextXY(3,13);

String String_Score=String(Score);
oled.putString(String_Score);
oled.setTextXY(5,3);
oled.putString(“Press Reset”);
oled.setTextXY(6,3);
oled.putString(“To Repeat!”);

//write the “Congratulation, Your Score, press Reset, To Repeat!” and score variable
on the x and y coordinates determined on the OLED screen

for(int i=0;i<3;i++){

digitalWrite(20,HIGH);

delay(500);

digitalWrite(20,LOW);

delay(500);

} counter=1; //turn the buzzer on and off three times

101

PicoBricks Project Book

void Correct (){
Score +=10;
oled.clearDisplay();
oled.setTextXY(3,4);
oled.putString(“10 points”);
//increase the score by 10 when the gamer answers correctly

}

void Change_Word (){
oled.clearDisplay();
Night_or_Day=random(0,2);

if (Night_or_Day==0){
oled.setTextXY(3,6);
oled.putString(“NIGHT");
lelse{
oled.setTextXY(3,7);
oled.putString(“DAY");

}

}
/fwrite “NIGHT” or “DAY"” on random OLED screen

void Wrong (){
oled.clearDisplay();
oled.setTextXY(1,3);
oled.putString(“Game Over”);
oled.setTextXY(3,1);
oled.putString(“Your Score:);
oled.setTextXY(3,13);
String String_Score=String(Score);
oled.putString(String_Score);
oled.setTextXY(5,3);
oled.putString(“Press Reset");
oled.setTextXY(6,3);
oled.putString(“To Repeat!”);

// write the score variable and the ex ressions are quotation marks to the
coordinates determined on the OLED screen.

digitalWrite(20,HIGH);

102

PicoBricks Project Book

delay(1000);
digitalWrite(20,LOW);
counter=T;

}
GitHub Night and Day Project Page

http://rbt.ist/nightday

103

2.16. Voice Controlled Robot Car

Developing and continuing to develop artificial intelligence applications recognize
human characteristics, learn and try to behave like people. We can express artificial
intelligence as software that can learn in its shortest form. Sometimes it learns the
image, sometimes the sound, and sometimes by using the data it collects from the
sensors. It does this thanks to the algorithms determined by the developers, and it
helps in the decision-making processes in the areas it is used according to the results
it has achieved. In short, artificial intelligence applications are now used in situations
where the decision-making process needs to be done quickly and without errors.
From the marketing field to the defense industry, from education to health, from
economy to entertainment, artificial intelligence increases efficiency and reduces
costs.

In this project we will do with PicoBricks, we will make a 2WD car that you can
control by talking. PicoBricks allows you to communicate wirelessly with 2 6V DC
motors and bluetooth.

2.16.1. Project Details and Algorithm

In the project, the robot car kit that comes out of the set will be assembled and
controlled via mobile phone. The HCO5 bluetooth module is a module that enables
us to communicate wirelessly between PicoBricks and a mobile phone. Thanks to
the mobile application installed on the mobile phone in the project, the commands
sent from the phone will be transmitted to PicoBricks via the HCO5 module and the
robot car will move according to these data. We can direct the robot car with the
forward, backward, right, left buttons from the mobile phone, as well as send data
to PicoBricks with voice command. In the project, we will give voice commands to
control the movements of the robot car.

2.16.2. Wiring Diagram

Bl

yHHEE LR Y

“ranplait
[-
o

ARARRARRARAARAARARKER

Bty
(o]
o)

104

2.16.3. Project Proposal

In this project, we moved the robot car by giving voice commands via the mobile
application we installed on the mobile phone. You can control the mechanism

with voice commands or buttons by connecting the HCO5 bluetooth module to the
pan-tilt mechanism in the two-axis robot arm project. Likewise, you can try a mobile
application where you can control the robot car in this project using buttons instead
of voice commands, or you can develop a mobile application specific to your project
with the MIT Appinventor editor.

With the HCO5 Bluetooth module, you can operate not only the motor driver and
motor, but also other modules on PicoBricks. For example, you can light the RGB
LED in any color you want through the mobile application, read the temperature
and humidity values from the DHT11 module, the light values on the LDR sensor,
and print texts on the OLED screen. There is a mobile application specially written
for these processes with the MIT Appinventor editor, and ready-made codes written
in Microblocks to automatically run the data coming from the application. You can
run all these features by downloading and running the Microblocks file from the link
below and by downloading the android apk file and installing it on your phone.

Download Link

2.16.4. Coding the Project with MicroBlocks

coEnmant
CIGL G THOLL S HORGT A PR 8 UL e ven
Frsp e wd o I vl Tt nneee. oo smmanarhs Goan o nedids 376

lantrpmoemoncs whh C50 sadz eontozd ord oot hr Bl A mom INFU T zacpone
ol e e e e B ey s s

Toen CIZCSHYEST the UZE och cond oon e 30 10 2o rom he A5F usbg e 3LEd.

W -
SRURTFF e ks BHI0D
worle ard cor ot the RIOTOR s sch o e CRCT GIT MO INCIT

when boken =
FIGOEricks == motor =pe=d TpEsd |-100 b2 100)
walt ET milsccs
PicuBrickn xed rmic ERIED rped W 1108 i, 108)

' PicoBickn wel it ETEILF wpwd 5 (100 L 100}

=ct o @
PlcoBricks sci motor IS specd | speed (<100 1o 400} PlcoBricks s motor speed % specd 100 ko
PleoBricks sal mobar speasd §E) {-100 to 100} A0y
wart 3 milim=ca walt fEL) milsccs
PlooBricks el motar spacd I (100 o 100) PiznBrivckon el wnoicn SERIRCY wiveen! A (100 k100

writa Jaln ELE id b on TFT at x R ¥ ifEN color
wezale) v AP

cala when tokcen = IR0 when ned BLE connected

= m o . defer mormchrame display updates
PicrBaickn wal ot JIEY syt) [-100 10 100)

PisoBncks set mobor =peed | speed {-100 to 10G) write an TFT at » IER v I colar 3

walt EE) milisees write: on TFT at x ¥ calor 3
PicoBaickn wal et §SEILF npssd 5 (100 1 100)

It langth of Bokan '.-ﬂ ﬁu-,nm .}.
color >
say (last message @) token A B

Click to access the project’s MicroBlocks codes.

105

2.16.5. Construction Stages of the Project

1. Screw the first motor to the chassis of the 2WD robot car that comes out of the set
and fix it.

2. Fix the second motor by screwing it to the chassis.

3. Attach the wheels to the motors.

4. Fix the caster under the chassis using spacers.

5. Fix the spacer with the nut from the top of the chassis.

106

6. Fix 4 spacers on the four corners of the lower chassis.

7. Fix the upper chassis with plug and nuts.

8. Connect the cables of the motors to the terminals on the motor driver.

9. Fix the motor driver, Bluetooth module, PicoBricks board and battery box to the
chassis using hot silicone.

107

PicoBricks Project Book

2.16.6. MicroPython Codes of the Project

fromm machine import Pin, UART, 12C
from utime import sleep
from picobricks import MotorDriver

i2c = 12C(0, scl=Pin(5), sda=Pin(4)) # Init 12C using pins
motor = MotorDriver(i2c)

uart = UART(0,9600)
cmd = uart.readling()

motor.dc(1,0,0)
motor.dc(2,0,0)
Cmd — un

while True:
sleep(0.05)
if uart.any():
cmd = uart.readline()
print(cmd)
if crnd.startswith(b'f’) or cmd.startswith(b'F):
motor.dc(1,255,0)
motor.dc(2,255,0)
elif crnd.startswith(b'r’) or crnd.startswith(b'R’):
motor.dc(1,255,0)
motor.dc(2,0,0)
elif crnd.startswith(b'l') or cmnd.startswith(b'L):
motor.dc(1,0,0)
motor.dc(2,255,0)
elif crnd.startswith(b's’) or cmd.startswith(b’'S’):
motor.dc(1,0,0)
motor.dc(2,0,0)

nn

cmd=
2.16.7. Arduino C Code of the Project
#include <Wire.h>

void dc(int dcNumber, int speed, int direction){
Wire.beginTransmission(0x22);

108

PicoBricks Project Book

Wire.write(0x26);
Wire.write(dcNumber);
Wire.write(speed);
Wire.write(direction);

int cs = dcNumber A speed A direction;
Wire.write(cs);
Wire.endTransmission();

void setup() {
Seriall.begin(9600);

}

void loop() {
if (Seriall.available() > 0) {
char sread = Seriall.read();
Serial.printin(sread);

if (sread ==f") {
Forward();

} else if(sread == ‘r'){
Right();

} else if(sread == I'){
Left();

} else if(sread == 's'){
Stop();

}

}
}

void Forward(){
dc(1,255,1);
dc(2,255,1);
delay(1000);
dc(1,0,1);
dc(2,0,1);

void Left(){
dc(1,0,1);
dc(2,255,1);

109

PicoBricks Project Book

delay(500);
dc(1,0,1);
dc(2,0,1);

}

void Right(){
dc(1,255,1);
dc(2,0,1);
delay(500);
dc(1,0,1);
dc(2,0,1);

void Stop(){
dc(1,0,1);
dc(2,0,1);
delay(1000);
}

After uploading the Arduino codes, download the android application from the
link below and open the terminal mode and use the letters f, b, r, |, s for vehicle
movements.

Link

GitHub Voice Controlled Robot Car Project Page

http://rbt.ist/voicecar

110

2.17. Two Axis Robot Arm

Robot arms have replaced human power in the industrial field. In factories, robotic
arms undertake the tasks of carrying and turning loads of weights and sizes that
cannot be carried by a human. Being able to be positioned with a precision of one
thousandth of a millimeter is above the sensitivity that a human hand can exhibit.
When you watch the production videos of automobile factories, you will see how
vital the robot arms are. The reason why they are called robots is that they can be
programmed to do the same work with endless repetitions. The reason why it is
called an arm is because it has an articulated structure like our arms. How many
different directions a robot arm has the ability to rotate and move is expressed

as axes. Robot arms are also used for carving and shaping aluminum and various
metals. These devices, which are referred to as 7-axis CNC Routers, can shape metals
like a sculptor shapes mud.

According to the purpose of use in robot arms, stepper motor and servo motors,
which are a kind of electric motor, are used. PicoBricks allows you to make projects
with servo motors.

2.17.1. Project Details and Algorithm

In preparation for the installation, we will first write and upload the codes to set the
servo motors to O degrees. When an object is placed on the LDR sensor, the robot
arm will bend down and close its open gripper. After the gripper is closed, the robot
arm will rise again. As a result of each movement of the robot arm, a short beep will
be heard from the buzzer. The RGB LED will glow red when an object is placed on
the LDR sensor. When the object is held by the robot arm and lifted into the air, the
RGB LED will turn green.

Servo motor movements are very fast. In order to slow down the movement, we will
code the servo motors with a total of 90 degrees of movement, 2 degrees each at 30
millisecond intervals. We're not going to do this for the gripper to close.

In order for the servo to perform its holding and releasing function, print and
assemble the necessary parts from the 3D printer from the link here.

1M

2.17.2. Wiring Diagram

BHEHE

HERS
“,Ill

I‘Iiﬂil‘.‘
i:_"

Hi

i 20

3'['

2.17.3. Project Proposal

By adding the HCO5 module to the 2 axis robot arm project, you can develop it by
controlling it from your mobile phone with the mobile application.

2.17.4. Construction Stages of the Poject

Prepare the parts of the Pan-Tilt kit to prepare the project. Carry your 3D printed
parts, waste cardboard pieces, hot silicone glue and scissors with you.

112

\

1. First of all, we will prepare the fixed arm of the robot arm. Make an 8 cm high
cardboard cylinder into the rounded part of part D. Place it on the D part and stick it
with silicone.

2. Place the head that came out of the servo motor package on the C part by
shortening it a little. Fix with the smallest screws from the Pan Tilt kit.

113

4. Internally attach the servo motor to part C. Then place the servo motor on part B
and screw it.

5. For the holder, cut one of the servo motor heads in the middle of the gear part that
you printed on the 3D printer and place it into the gear. Then screw it to the servo
motor.

= y 4 -
7. Place the servo in the 3D print holder and fix it. You can do this with hot silicone
or by screwing. When placing the servo gear on the linear gear, make sure it is fully
open.

114

9. Pass the piece we prepared in step 3 over the cylinder we prepared from
cardboard in the first step and fix it with silicone.

10. Put the motor drive jumpers on the Servo pins. Connect the cable of the holding
servo to the GPIO21 and the cable of the tilting servo to the GPIO22.

115

11. Place the motor driver, buzzer, LDR and RGB LED module on a platform and
place the robot arm on the platform accordingly. With the 3D Pen printer, you can
customize your project as you wish.

T el R
J R

-

i
i
/7

e

B N

12. You can operate the Robot arm if you feed PicoBricks with USB or 3 pen batteries
from the power jack on the Picoboard.

2.17.5. Coding the Project with MicroBlocks

Open MicroBlocks and connect to PicoBricks. Add the servo library. Connect the

116

PicoBricks Project Book

apan
= TR e D

PicoBricks set seno) o angicupdown degrecs! 80 to

change b @
£l - —

FlesBricks hem off RGE LEDO FrooBrichs aet servg m o angleupdown degrees|-59 ko

whan PlosBricks light sarcar (0400} % =

PMcoBricks sct sermo 1o anglcupdown degrocs-B0 to
Er)
3y anpicupdown

wlt il acs

piay note IEEY cctave N tor EEDH mr=

dafing | s

dafing PleoEdeks sot surea SN to @R dagroos) 80 o 509

may note) octave) for m=

apun
PlooBricies sab sanea n ba dag
pay note octave IEF tor i} ma
soy {ZETTH b

e iy]

ary b
wak milhsers

milhisess

Click to access the codes of the project.

2.17.6. MicroPython Codes of the Project
from machine import Pin, PWM, ADC, 12C
from utime import sleep

from picobricks import WS2812, MotorDriver
#define libraries

ws = WS2812(6, brightness=0.3)

ldr=ADC(27)

buzzer=PWM(Pin(20, Pin.OUT))

i2c = 12C(0, scl=Pin(5), sda=Pin(4)) # Init 12C using pins
motor = MotorDriver(i2c)

define LDR, buzzer and servo motors pins

buzzer.freq(440)
define frequencies of buzzer

RED = (255, 0, 0)

GREEN = (0O, 255, 0)

BLACK = (0O, O, O) # RGB color settings
angleupdown=90
angleupdown2=180

117

PicoBricks Project Book

def up():

global angleupdown

foriin range (45):
angleupdown +=1

motor.servo(2,angleupdown)

sleep(0.03)

buzzer.duty_ul6(2000)

sleep(0.1)

buzzer.duty_ulo(0)

servo2 goes up at specified intervals

def down():

global angleupdown

foriin range (45):
angleupdown -=1

motor.servo(2,angleupdown)

sleep(0.03)

buzzer.duty_ul6(2000)

sleep(0.1)

buzzer.duty_ulo(0)

servo2 goes down at specified intervals

def open|):
global angleupdown?2
foriin range (45):
angleupdown?2 +=1
motor.servo(l,angleupdown?)
sleep(0.03)
buzzer.duty_ul6(2000)
sleep(0.1)
buzzer.duty_ulo(0)
servol works for opening the clamps
def close():
global angleupdown?2
foriin range (45):
angleupdown?2 -=1
motor.servo(l,angleupdown?)
sleep(0.03)
buzzer.duty_ule(2000)
sleep(0.1)
buzzer.duty_ule(0)

118

PicoBricks Project Book

servol works for closing the clamps
open()
motor.servo(2,angleupdown)
ws.pixels_fil|(BLACK)
ws.pixels_show()

while True:
if ldr.read_u16()>20000:

ws.pixels_fill(RED)
ws.pixels_show()
sleep(1)
buzzer.duty_ul6(2000)
sleep(1)
buzzer.duty_ulo(0)
open()
sleep(0.5)
down()
sleep(0.5)
close()
sleep(0.5)
up()
ws.pixels_fill[GREEN)
ws.pixels_show()
sleep(0.5)

According to the data received from LDR, RGB LED lights red and
green and servd motors move

2.16.7. Arduino C Codes of the Project
#include <Adafruit_NeoPixel.nh>
#include <Wire.h>

#define PIN 6

#define NUMPIXELS 1

Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
#define DELAYVAL 500

int angleupdown;

void servo(int servonumber,int angle){
Wire.beginTransmission(0x22);
Wire.write(0x26);

119

PicoBricks Project Book

Wire.write(servonumber + 2);
Wire.write(Ox0O0);
Wire.write(angle);

int cs = (servonumber + 2) A angle;
Wire.write(cs);
Wire.endTransmission();

void setup() {
pinMode(20,0UTPUT);
pinMode(27,INPUT);

pixels.begin();
pixels.clear();

Open();
angleupdown=180;
servo(2,angleupdown);

void loop() {
if(analogRead(27)>150){

pixels.setPixelColor(0, pixels.Color(255, O, 0));
pixels.show();

delay(1000);

tone(20,700);

delay(1000);

noTone(20);

Open();

delay(500);

Down();

delay(500);

Close();

delay(500);

Up();

pixels.setPixelColor(0, pixels.Color(0O, 255, 0));
pixels.show();

delay(10000);

pixels.setPixelColor(0, pixels.Color(0O, O, O));
pixels.show();

120

PicoBricks Project Book

Open();
angleupdown=180;
servo(2,angleupdown);

// If the LDR data is greater than the specified limit, the buzzer will sound, the RGB
will turn red and servo motors will work

// The RGB will turn green when the movement is complete

}
}

void Open(){
servo(1,180);

}

void Close(){
servo(1,30);

}

void Up(){
for (int i=0;i<45;i++){
angleupdown = angleupdown+2;
servo(2,angleupdown);
delay(30);
}
}

void Down(){
for (int i=0;i<45;i++){
angleupdown = angleupdown-2;
servo(2,angleupdown);
delay(30);

}

}
GitHub Two Axis Robot Arm Project Page

http://rbt.ist/robotarm

121

2.18. Smart House

Workplaces, factories, homes and even animal shelters... There are different
electronic systems that can be used to protect our living spaces against intruders.
These systems are produced and marketed as home and workplace security systems.
There are systems where the images produced by security cameras are processed
and interpreted, as well as security systems that detect the human body and its
movements with sensors and take action. Security systems are set up like a kind of
alarm clock and give audible and visual warnings when an unidentified activity is
detected in the specified time zone. It notifies the business or the home owner, and
it can also make automatic notifications to the security units.

Gas leakage, fire etc. in such cases, gas sensors are used in homes and workplaces
to prevent poisoning. In a negative situation, people living in the environment are
warned by giving a loud alarm.

We will prepare a model smart home project with PicoBricks using the HC-SR501
and MQ-2 gas sensor. This sensor HC-SR501, also known as PIR sensor, detects
motion by capturing the changes of infrared waves reflected by the human body.

2.18.1. Project Details and Algorithm

When the HC-SR501 PIR sensor detects motion, it gives digital output for 3 seconds.
We will use a Picoboard, buzzer and button LED module in the project. All parts must
be in the model. When PicoBricks starts, the button must be pressed to activate the
alarm system. After pressing the button, we must wait 3 seconds for the hand to be
pulled out of the model. At the end of 3 seconds, the red LED lights up and the alarm
system is activated. When the alarm system detects a movement, the red LED will
start to flash and the buzzer will sound the alarm. To mute it, PicoBricks must be
restarted.The MQ-2 sensor is always on. When it detects a toxic gas, it will notify you
with a buzzer and red LED.

2.18.2. Wiring Diagram

[=l-d-1-1-}-]

BRI

sy

"-I'\
I ='
ben
o
i*9

122

2.18.3. Project Proposal

After making the 25th project, the smart greenhouse, by adding the ESP8266 mode
to the burglar alarm project, you can send a notification to the home owner's phone
when a thief enters to the home, and turn the project into an IOT project. You can
install fire extinguishing pipes on the ceiling of the house with a submersible pump,
so that when there is a fire in the house, you can automatically extinguish it.

2.18.4. Construction Stages of the Project

To run the project, you have to turn a cardboard box into a model house. You will
need scissors, pencils, tape, glue, and a utility knife. Draw windows and doors on the
box with a pencil. Cut the door section with a utility knife.

| =
.
-
[]
.
| .
.
.

Place pieces of Picobricks inside the model house. Position the PIR sensor to see the

123

door directly from the inside. Stick the button module just above the door from the
inside.

When you connect the battery case to Picoboard and open it, the codes will start to
run. 3 seconds after pressing the button, the alarm system will be activated and the
red LED will turn on. As soon as you put your hand in the door, the buzzer will start to
sound.

When you hold the lighter gas inside the house, the alarm system is expected to be
activated again.

124

PicoBricks Project Book

2.18.5. Coding the Project with MicroBlocks

vl PiceBeicks lhllen

wart B millr=cs

Lracdcast et IR R

when racahvee

Sl WO |G S A alam ke d

play notc octave i for ms
play mds m sH:lHwH 'n (=] m mH

wihen BT R recened
PlecBricks sat redd LED

play motc octave §§ for m=
piay note) octzve) o m=

walt Kl milllsacs

wart urhil. FIR at pan fJF detectzd mowement

broadcast Mk e Fed i

wihen r=ad chgrial mn €30 B

[t R R [|

carimant . .
| Spbpoad # L e sesavace e el

E50 N AE ohomn dooc e S
pmnll unill PenBiichy bulion

My sl ﬁ eHzlHun n 1= m mu

PFlzoBricks set red LEOD

wHil m millinnizs

play nodc octave 4E) for IEXF m=

PamBiichn wul red LED

walt o millisces

Click to access the codes of the project.

2.18.6. MicroPython Codes of the Project

fromm machine import Pin, PWM

from utime import sleep

define libraries

PIR=Pin(14, Pin.IN)

MQ2=Pin(1,Pin.IN)
buzzer=PWM(Pin(20,Pin.OUT))
redLed=Pin(7,Pin.OUT)
button=Pin(10,Pin.IN,Pin.PULL_DOWN)
define output and input pins

activated=0
gas=0

while True:
if button.value()==1:
activated=1
gas=0
sleep(3)

125

PicoBricks Project Book

redlLed.value(l)
buzzer.duty_ul16(0)
if MQ2.value()==1:
gas=lI
if activated==1:
if PIR.value()==1:
buzzer.duty_ule(6000)
buzzer.freq(440)
sleep(0.2)
buzzer.freq(330)
sleep(0.1)
buzzer.freq(494)
sleep(0.15)
buzzer.freq(523)
sleep(0.3)
if gas==1:
buzzer.duty_ule(6000)
buzzer.freq(330)
sleep(0.5)
redlLed.value(l)
buzzer.freq(523)
sleep(0.5)

redLed.value(0)

tox # LED will light and buzzer will sound when PIR detects motion or MQ2 detects
oxic gas

2.18.7. Arduino C Codes of the Project

void actived (){
digitalWrite(7,1);
while(!(digitalRead(14) ==1))
{
_loop();
}

motion_detected();

}

void motion_detected (){
while(1) {
/] buzzer settings

126

PicoBricks Project Book

tone(20,262,0.2551000);
delay(0.25*1000);
tone(20,330,0.25*1000):
delay(0.25*1000);
tone(20,262,0.2551000);
delay(0.25*1000);
tone(20,349,0.251000);
delay(0.25*1000);
// sound the buzzer when PIR detected a motion

_loop();
}
}

void _delay(float seconds) {
long endTime = millis() + seconds * 1000;
while(millis() < endTime) _loop();

}

void _loop() {
}

void loop() {

_loop();
}

void setup() {

pinMode(10,INPUT);
pinMode(1,INPUT);
pinMode(20,0UTPUT);
pinMode(7,0UTPUT);
pinMode(14,INPUT);

// define input and output pins

while(1) {
if(digitalRead(10) ==1){
_delay(3);
actived();
}
if(digitalRead(1) == 1){
while(!(digitalRead(10) ==1))

127

PicoBricks Project Book

{

_loop();
tone(20,349,0.5*1000);

delay(0.5¥1000);
digitalWrite(7,1);
_delay(0.5);
tone(20,392,0.5%1000);
delay(0.5¥1000);
digitalWrite(7,0);
_delay(0.5);
}
}
_loopl();

}
GitHub Smart House Project Page

http://rbt.ist/smarthouse

128

2.19. Piggy Bank

Ultrasonic sensors are sensors that show electrical change by being affected by
sound waves. These sensors send sound waves at a frequency that our ears cannot
detect and produce distance information by calculating the return time of the
reflected sound waves. We, the programmers, develop projects by making sense of
the measured distance and the changes in distance. Parking sensors in the front and
back of the cars are the places where ultrasonic sensors are most common in daily
life. Do you know the creature that finds its way in nature with this method? Because
bats are blind, they find their way through the reflections of the sounds they make.
[Ses dalgalarinin gésterildigi bir gorsel olabilir]

Many of us like to save money. It is a very nice feeling that the money we save little
by little is useful when needed. In this project, you will make yourself a very enjoyable
and cute piggy bank. You will use the servo motor and ultrasonic distance sensor
while making the piggy bank.

2.19.1. Project Details and Algorithm

HC-SRO4 ultrasonic distance sensor and SG90 servo motor will be used in this
project. When the user leaves money in the hopper of the piggy bank, the distance
sensor will detect the proximity and send it to the PicoBricks. According to this
information, PicoBricks will operate a servo motor and raise the arm, throw the
money into the piggy bank and the arm will go down again.

2.19.2. Wiring Diagram

I
D

b

uv.r-ir:sar

Q
o
Q

us
O
O

129

2.19.3. Project Proposal

By adding an RGB LED module to the glutton piggy bank project, you can make the
light turn on in the color you want every time a coin is thrown, you can add a buzzer
and make a sound every time a coin is thrown. You can also print the number of coin
flips on the screen by adding an OLED screen.

2.19.4. Construsction Stages of the Project

You can access the original files and construction stages of the project by clicking
here. Unlike the project in this link, we will use the HC-SRO4 ultrasonic distance
sensor. You can download the updated 3D drawing files according to the HC-SR04
ultrasonic distance sensor from this link and get 3D printing.

2: Fix the second part of the piggy bank arm with the M3 screw and nut to the first
part where the hopper is.

130

3. Pass the servo motor cable and place it in its slot.

gpummnEn: gl
TR L T T

4: Place the servo motor and its housing on the body of the piggy bank. You can use

hot glue here.

5: Place the ultrasonic distance sensor in the piggy bank body and fix it with hot
glue.

6: Attach the piggy bank arm to the servo motor and fix it to the top cover with M3
SCrews.

7: Fix the piggy bank arm to the body with M2 screw.

131

8: Plug the cables of the servo motor and ultrasonic distance sensor and connect the
power cables.

9: According to the circuit diagram, connect the cables of the servo motor and
ultrasonic distance sensor to the pico.

10: Plug Pico's USB cable and reassemble the cables and attach the bottom cover.
That is all.

132

PicoBricks Project Book

2.19.5. Coding the Project with MicroBlocks

when started

PicoBricks set servo) to @ degrees(-90 to 90)

when distance (cm) trigger m echo m < o

ENA 2000 Wyl EEES

PicoBricks set servo il 4 to @ degrees(-90 to 90)

wait @ millisecs

PicoBricks set servo (il 4 to @ degrees(-90 to 90)

Click to access the project's MicroBlocks codes.

2.19.6. MicroPython Codes of the Project

fromm machine import Pin, PWM, 12C
import utime
#tdefine the libraries

i2c = 12C(0, scl=Pin(5), sda=Pin(4)) # Init 12C using pins
motor = MotorDriver(i2c)

trigger = Pin(15, Pin.OUT)
echo = Pin(14, Pin.IN)
#define the input and output pins

motor.servo(1,110)

def getDistance():
trigger.low()
utime.sleep_us(2)
trigger.high|)
utime.sleep_us(5)
trigger.low()
while echo.wvalue() ==

133

PicoBricks Project Book

signaloff = utime.ticks_us()
while echowvalue() ==1:
signalon = utime.ticks_us()
timepassed = signalon - signaloff
distance = (timepassed * 0.0343) / 2
print(“The distance from object is “,distance,’cm”)
return distance
#calculate distance
while True:
utime.sleep(0.01)
if int(getDistance())<=5: #if the distance variable is less than 5
motor.servo(1,110)
utime.sleep(1) #wait
else:
motor.servo(1,180)

2.19.7. Arduino C Codes of the Project

#include <Wire.h>

#define trigPin 15
#define echoPin 14

void servo(int servonumber,int angle){
Wire.beginTransmission(0x22);
Wire.write(0x26);
Wire.write(servonumber + 2);
Wire.write(0x00);
Wire.write(angle);
int cs = (servonumber + 2) A angle;
Wire.write(cs);
Wire.endTransmission();

void setup() {
Serial.begin (9600);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);
}

134

PicoBricks Project Book

void loop() {
long duration, distance;
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseln(echoPin, HIGH);
distance = (duration/2) / 29.1;
//calculate distance
if (distance <5){ //if the distance variable is less than 5
Serial.print(distance);
Serial.printIn(* cm”);
servo(1,180);
}
else if (distance>5) { //if the distance variable is greater than 5
Serial.print(distance);
Serial.printIn(* cm”);
servo(1,100);
}
}

GitHub Piggy Bank Project Page

http://rbt.ist/bank

135

2.20. NFC Smart Door

Security systems include technologies that can control authorizations at building
and room entrances. Card entry systems, in which only authorized personnel can
enter the operating rooms of hospitals, are one of the first examples that come

to mind. In addition, the entrance doors of areas that should not be entered by
persons or personnel of all levels in military security centers are equipped with card
and password entry technologies. These electronic systems used in building and
room entrances not only prevent the entrance of unauthorized persons, but also
ensure that entry and exit information is kept under record. Password entry, card
entry, fingerprint scanning, face scanning, retina scanning and voice recognition
technologies are the authentication methods used in electronic entry systems.

Systems such as RFID and NFC are the basic forms of contactless payment
technologies today. Although the contactless payment technology in credit cards is
technically different, the working logic is the same. The maximum distance between
the reader and the card is one of the features that distinguishes the technologies
used from each other. When leaving the shopping stores, especially in clothing
stores, NFC tags on the products will beep if they are detectioned to the readers at
the entrance. A kind of RFID technology is used in those systems.

In this project, we will prepare a card entry system on a model house. The electronic
components we will use are MFRC522 RFID reader and 13.56 Mhz cards.

2.20.1. Project Details and Algorithm

Place the MFRC522 reader near the door of the model so that it is visible from the
outside. Place the RGB LED and the buzzer on the wall where the door is visible from
the outside. Picoboard can remain in the model. The entrance door of the model
should be connected to the door of the servo, while the servo is set to O degrees, the
door should be closed. You should determine the serial number of the RFID / NFC
tag that will open the door, create the homeowner variable and assign the serial
number to this variable.

Set the door to the closed position when PicoBricks starts. Make the buzzer beep
when a card is shown to the RFID reader. If the serial number of the card being read
matches the serial number in the homeowner variable, turn the RGB LED on green.
Then let the door open. Make sure the door is closed 3 seconds after the door is
opened. If the serial number of the card being read does not match the homeowner
variable, turn the RGB LED on red. A different tone sounds from the buzzer.

136

2.20.2. Wiring Diagram

RC-522 RFID | PicoBricks

VCC>3.3V

RST>GP20***
GND>GND

IRQ>Not Connected
MISO>GP16
MOSI>GP19

SCK>GP18

SDA>GP17

0o not connect
when using MicroBlocks

(AR AN AR ANNT RN
Re rey Pi

2398823533 25338bs58

i =

Be sure to make the cable connections of the RC522 RFID card reader module
according to the table below.

VCC 3.3V

RST GP20 ***

GND GND

IRQ Not Connected
MISO GPl6

MOSI GP19

SCK GP18

SDA GP17

** Does not connect when using MicroBlocks

2.20.3. Project Proposal

In the automatic door project, you can give person names to RFID cards, by adding
an OLED screen to the project, you can print the name of the person who read the
card on the OLED screen when the card is read.

137

PicoBricks Project Book

2.20.4. Construction Stages of the Project

We will make the project on the house model you used in the Smart Home project
number 18. Drill holes for the RGB LED, Buzzer and RC522 RFID reader on the house
model.

{ "RGBiled || 'Buzzer

Stick double-sided foam tape on the back of the RGB LED and Buzzer and stick it on
the box. Place the RC522 inside the model as in the image.

138

Attach the servo motor to the inside of the model with double-sided tape as a hinge
in the upper left corner of the door. Attach the servo head to the door with hot glue
or liquid glue.

Finally, place the Pico board and the 2-key battery box inside the model house and
complete the cable connections. After making the final checks of your project, it is
ready to work.

139

PicoBricks Project Book

2.20.5. Coding the Project with MicroBlocks

-# RECIREZEILEay S5 M=z]

LD DRI IR
WCE 3EIT G
G ERCAS

FHETEN P TR R R
el

||||| sl

Clzk o Coce e o2t ad obizly the RFIZ cede Foam aor eond.
Upzatz v whe sasts ha—eowncr varkel © vl sow LU
T R L S R e e R TE R
RC522 Intoltzs BF1 ssPin IEER
PloaBricics beag fail

loin Hems of st | homeovaer b =
ir

Join Homs of M=l ACE2E card LD
=2y string fram unkecdo
string from uniscse

|oim Hems of st ROE2Z card WD scparator i 4 A »

PlcoBricks =21 RGB LED color

e R b AN clnygr s 00 1 B

woe YRR b TR cgummn [0 b D)
zay string fram unlecda
o
wlt mlllacs

4k

ERUN o o Pooder desezize
vanil T il
ap

walt g millisccs

Click to access the project's MicroBlocks codes.

2.20.6. MicroPython Codes of the Project
The code to be run to learn the Card ID:

from machine import Pin, SPI
from mfrc522 import MFRC522
import utime

#define libraries

sck = Pin(18, Pin.OUT)

mosi = Pin(19, Pin.OUT)

miso = Pin(16, Pin.OUT)

sda = Pin(17, Pin.OUT)

rst = Pin(15, Pin.OUT)

spi = SPI(0, baudrate=100000, polarity=0, phase=0, sck=sck, mosi=mosi, Miso=miso)
rdr = MFRC522(spi, sda, rst)
#define MFRC522 pins

while True:
(stat, tag_type) = rdr.request(rdr.REQIDL)
if stat == rdr.OK:
(stat, raw_uid) = rdr.anticoll()
if stat == rdr.OK:
uid = (“Ox%02x%02x%02x%02X" % (raw_uid[0], raw_uid[1], raw_uid[2], raw_uid[3]))

140

PicoBricks Project Book

print(uid)
utime.sleep(1)
#read the card and give the serial number of the card

Project Codes:

fromm machine import 12C, Pin, SPI, PWM
fromm mfrc522 import MFRC522

from ws2812 import NeoPixel

from utime import sleep

servo = PWM(Pin(21))
servo.freq(50)
servo.duty_ul6(1350) #servo set O angle 8200 for 180.

buzzer = PWM(Pin(20, Pin.OUT))
buzzer.freq(440)

neo = NeoPixel(6, n=1, brightness=0.3, autowrite=False)
RED = (255, 0, O)

GREEN = (0O, 255, 0)

BLACK = (0, O, O)

sck = Pin(18, Pin.OUT)

mosi = Pin(19, Pin.OUT)

miso = Pin(16, Pin.OUT)

sda = Pin(17, Pin.OUT)

rst = Pin(15, Pin.OUT)

spi = SPI(0, baudrate=100000, polarity=0, phase=0, sck=sck, mosi=mosi, Miso=miso)
homeowner = “Ox734762a3"

rdr = MFRC522(spi, sda, rst)

while True;

(stat, tag_type) = rdr.request(rdr.REQIDL)
if stat == rdr.OK:
(stat, raw_uid) = rdr.anticoll()
if stat == rdr.OK:
buzzer.duty_ule(3000)
sleep(0.05)
buzzer.duty_ule(0)
uid = (“Ox%02x%02x%02x%02x" % (raw_uid[0], raw_uid[1], raw_uid[2], raw_uid[3]))
print(uid)
sleep(1)

141

PicoBricks Project Book

if (uid==homeowner):
neo.fill(GREEN)
neo.show()
servo.duty_ule(6000)
sleep(3)
servo.duty_ule(1350)
neo.fill(BLACK)
neo.show()

else:
neo.fill(RED)
neo.show()
sleep(3)
neo.fill(BLACK)
neo.show()
servo.duty_ule(1350)

2.20.7. Arduino C Codes of the Project

The code to be run to learn the Card ID:
#include <SPIl.h>

#include <MFRC522.h>

//define libraries

int RST_PIN = 26;
int SS_PIN =17,
//define pins

MFRC522 rfid(SS_PIN, RST_PIN):

void setup()

{
Serial.begin(9600);

SPIl.begin();
rfid.PCD_Init();
}

void loop() {

if (Irfid.PICC_IsNewCardPresent())
return;

if (Irfid.PICC_ReadCardSerial())
return;

142

PicoBricks Project Book

rfid.uid.uidByte[O] ;
rfid.uid.uidByte[1] ;
rfid.uid.uidByte[2] ;
rfid.uid.uidByte[3] ;
printid();
rfid.PICC_HaltA();
//Reading your ID.
}
void printid()
{
Serial.print(“Your ID: *);
for (int x = 0; X < 4; x++) {
Serial.print(rfid.uid.uidByte[x]);
Serial.print(*);
}

Serial.printin(*");

}

Project Codes:

#include <SPI.h>

#include <MFRC522.h>
#include <Servo.h>

#include <Adafruit_NeoPixel.h>
//Define libraries.

#define RST_PIN 26

#define SS_PIN 17

#define servoPin 22

#define PIN 6

#define NUMPIXELS 1

#define buzzer 20

//[define pins of servo,buzzer,neopixel and rfid.

Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
Servo motor;
MFRC522 rfid(SS_PIN, RST_PIN);

byte ID[4] = {*Write your own ID."};

void setup() {

143

PicoBricks Project Book

pixels.begin();
motor.attach(servoPin);
Serial.begin(9600);
SPl.begin();

rfid.PCD_Init();
pinMode(buzzer, OUTPUT);

void loop()

{

pixels.clear();

if (! rfid.PICC_IsNewCardPresent())
return;

if (! rfid.PICC_ReadCardSerial())
return;

if
(
rfid.uid.uidByte[O] == ID[0] &&
rfid.uid.uidByte[1] == ID[1] &&
rfid.uid.uidByte[2] == ID[2] &&
rfid.uid.uidByte[3] == ID[3])
{
Serial.printIn(*Door Opened.”);
printid();
tone(buzzer,523);
delay(200);
noTone(buzzer),
delay(100);
tone(buzzer,523);
delay(200);
noTone(buzzer);
pixels.setPixelColor(0O, pixels.Color(0, 250, 0));
delay(200);
pixels.show();
pixels.setPixelColor(0, pixels.Color(0, O, O));
delay(200);
pixels.show();
motor.write(180);
delay(2000);
motor.write(0);
delay(1000);

144

PicoBricks Project Book

//RGB LED turns green and the door opens thanks to the servo motor if the correct
card is read to the sensor.

}

else
{
Serial.printIn(*Unknown Card.”);
printid();
tone(buzzer,494);
delay(200);
noTone(buzzer);
delay(100);
tone(buzzer,494);
delay(200);
noTone(buzzer);
pixels.setPixelColor(0O, pixels.Color(250, O, 0));
delay(100);
pixels.show();
pixels.setPixelColor(0O, pixels.Color(0, O, 0));
delay(100);
pixels.show();

sen/égSB LED turns red and the door does not open if the wrong card is read to the

}
rfid.PICC_HaltA();

}
void printid()
{
Serial.print(“ID Number: “);
for(int X = O; x < 4; x++){
Serial.print(rfid.uid.uidByte[Xx]);
Serial.print(* *);
}

Serial.printIn(*");

}
GitHub NFC Smart Door Project Page

http://rbt.ist/door

145

2.21. Automatic Trash Bin

The Covid 19 pandemic has changed people's daily routines in many areas. In many
areas such as cleaning, working, shopping and social life, people were introduced

to a series of new rules that they had to comply with. Covid-19 has LED to the
development of new business areas as well as some products to stand out. At a time
when hand hygiene was very important, no one wanted to touch the lid of the trash
can to throw away their garbage.

When approached, the lids of which open automatically and when it is full, the
trash bins, which make bags ready to be thrown away, found buyers at prices far
above their cost. In addition, automatic disinfectant machines provided contactless
hygiene by pouring a certain amount of liquid into our palms when we held them
under our hands. Automatic disinfectant machines took place on the shelves at
prices well above their cost. These two products have similarities in terms of working
system. In automatic disinfectant machines, a pump with an electric motor directly
transfers the liquid, and some models have devices based on the pumping system
with the power of the servo motor. In automatic trash bins, a servo motor that
opens the lid was used, and infrared or ultrasonic sensors were used to detect hand
movement.

In this project, you will make a mobile and automatic stylish trash bin for your room
using an ultrasonic sensor and servo motor with PicoBricks.

2.21.1. Project Details and Algorithm

HC-SRO4 ultrasonic distance sensor and SG90 servo motor will be used in this
project. When the user puts his hand in front of the lid of the trash can, the distance
sensor will detect the proximity and send it to the PicoBricks. According to this
information, PicoBricks will open the lid of the garbage can by running a servo motor
and will lower it again after a short while.

2.21.2. Wiring Diagram

- .
B -

ielelalinle

i

IR

H
o

&

146

2.21.3. Coding the Project with MicroBlocks

PicoBricks set servo () to degrees(-90 to 90)

when distance (cm) trigger @ echo m < m
- wait @) millisecs

PicoBricks set servo m to m degrees(-90 to 90)

wait @ millisecs

PicoBricks set servo () to @E) degrees(-90 to 90)

Click to access the project’'s MicroBlocks codes.

2.21.4. Construction Stages of the Project

You can download the 3D drawing files of the project from this link and get 3D

printing.

1. Fix it by screwing it to the trash bin cover of the servo motor apparatus.

2: Fix the ultrasonic distance sensor on the lid of the trash bin with the hot glue.

147

3: Pass the cables of the ultrasonic distance sensor through the hole in the box and
connect them to the pins shown in the PicoBricks circuit diagram, make the servo
motor and motor driver connections.

4: Fix the servo motor, PicoBricks and motor driver parts to the box with hot glue.

If everything went well, when you put your hand close to the garbage can, the lid of
the bucket will open and it will close again after you throw the garbage away.

2.21.5. Project Proposal

As in this project, where we automate a trash can in our house using sensors and
motors, you can have a drawer or a cabinet door open automatically with the help of
sensors and motors.

148

PicoBricks Project Book

2.21.6. MicroBlocks Codes of the Project

when started

PicoBricks set servo (§§) to @) degrees(-90 to 90)

when distance (cm) trigger @ echo m S m
wait m millisecs

PicoBricks set servo m to degrees(-90 to 90)

wait @i millisecs

PicoBricks set servo m to degrees(-90 to 90)

2.21.7. MicroPython Codes of the Project

from machine import Pin, PWM, 12C
from picobricks import MotorDriver
import utime

i2c = 12C(0, scl=Pin(5), sda=Pin(4)) # Init 12C using pins
motor = MotorDriver(i2c)

trigger = Pin(15, Pin.OUT)
echo = Pin(14, Pin.IN)

position =110
motor.servo(l,position)

def getDistance():
trigger.low()
utime.sleep_us(2)
trigger.high)
utime.sleep_us(5)
trigger.low()
while echowvalue() ==

signaloff = utime.ticks_us|)

while echowvalue() ==1:

149

PicoBricks Project Book

signalon = utime.ticks_us()
timepassed = signalon - signaloff
distance = (timepassed * 0.0343) /2
print(“The distance from object is “distance,"cm”)
return distance

while True:
utime.sleep(0.01)
if int(getDistance())<=5:
while position <180: #open
position +=2
motor.servo(l,position)
utime.sleep(0.02)
utime.sleep(2)
else:
while position > T10: #close
position -=2
motor.servo(l,position)
utime.sleep(0.02)

2.21.8. Arduino C Codes of the Project

#include <Wire.h>

#define trigPin 14
#define echoPin 15

void servo(int servonumber,int angle){
Wire.beginTransmission(0x22);
Wire.write(0Ox26);
Wire.write(servonumber + 2);
Wire.write(0Ox0O0);
Wire.write(angle);
int cs = (servonumber + 2) A angle;
Wire.write(cs);
Wire.endTransmission();

void setup() {
Serial.begin (9600);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);

150

PicoBricks Project Book

servo(1,110);

}

void loop() {

long duration, distance;

digitalWrite(trigPin, LOW);

delayMicroseconds(2);

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

duration = pulseln(echoPin, HIGH);

distance = (duration/2) / 29.1;

if (distance < 80) {
Serial.print(distance);
Serial.printIn(* cm”);
servo(1,179);

}

else if (distance<180) {
Serial.print(distance);
Serial.printIn(* cm”);
servo(1,110);

}

}

GitHub Automatic Trash Bin Project Page

http://rbt.ist/bin

151

2.22. Digital Ruler

Many tools are used to measure length. At the beginning of these tools are rulers.
Our measuring instrument differs according to the place and size to measure. Tape
measures are used in construction and architecture, and calipers are used for small
objects that require millimeter precision. In addition, if it is desired to measure an
area that needs both large and precise measurement, distance meters working with
laser and infrared systems are used. Ultrasonography devices used in the health
sector also work with the same logic, but convert their measurements into visuals.

In our project, we will use PicoBricks and an ultrasonic sensor to prepare a digital
ruler that will display the distance value on the OLED screen when the button is
pressed. Ultrasonic sensors detect distance according to the return times of the
sound waves they emit.

2.22.1. Project Details and Algorithm

When PicoBricks starts, instructions are displayed on the OLED screen. After the
user presses the button, 20 measurements are made at 50 millisecond intervals for
1second and the average is taken. The red LED stays on during the measurement,
and the red LED turns off when the measurement is complete. The average value
is added to the distance from the tip of the sensor to the back of the box. The last
distance value is displayed on the OLED display.

2.22.2. Wiring Diagram

152

2.22.3. Coding the Project with MicroBlocks

wiliun | PemBichy ballon
wheain Storbad

FicoBnchks set red LED

iz 12c ETEIETER S Addre==hes] reset pr iER FleoEroks baap (£ ms
fliip

wul m o dinlsens {i:inj higga ﬂ wzlur n
wine at « i v I nverse waik millr==cs

Frcsa SL0H set {LZLTRY 0 memmure + I
wiile JEETRY al %) v BB inverse
N FizoBrcks sct red LED

write WRGHCNCWES N ot x JE) v) imecrsc

writa juin (NP dictonca 4y ax i)y ED
Inuerse

piay node octave &) tor S m=

Click to access the project's MicroBlocks codes.

2.22.4. Construction Stages of the Project

To prepare the project, you need double-sided foam tape, a utility knife, a waste
cardboard box of approximately 15x10x5 cm.

1. Cut the holes for the ultrasonic sensor, OLED screen, button LED module, buzzer,
battery box to pass the cables with a utility knife.

153

2. Hang all the cables inside the box and stick the back of the modules to the box
with double-sided foam tape. Connect the trig pin of the ultrasonic sensor to the
GPIO14 pin and the echo pin to the GPIOI5 pin. You should connect the VCC pin to
the VBUS pin on the Picoboard.

3. After completing the cable connections of all modules, you can insert the 2-battery
box into the power jack of the Picoboard and turn on the switch. That's it for the
digital ruler project!

154

PicoBricks Project Book

2.22.5. Project Proposal

You can turn the digital ruler into a height meter by fixing it to the wall or ceiling.
Since the height meter will be fixed on the wall or ceiling, it will not be possible to
measure by pressing the button. For this, you can add the HCO5S bluetooth module
to the project and have it measure when a command is received from the mobile
application.

2.22.6. MicroPython Codes of the Project

fromm machine import Pin, PWM, 12C
from utime import sleep

from picobricks import SSD1306_12C
import utime

#define the libraries
redLed=Pin(7,Pin.OUT)
button=Pin(10,Pin.IN,Pin.PULL_DOWN)
buzzer=PWM(Pin(20,Pin.OUT))
buzzer.freq(392)

trigger = Pin(15, Pin.OUT)

echo = Pin(14, Pin.IN)

#define input and output pins

WIDTH =128

HEIGHT = 64

#OLED screen settings
sda=machine.Pin(4)
scl=machine.Pin(5)
i2c=machine.l2C(0,sda=sda, scl=scl, freq=1000000)
#initialize digital pin 4 and 5 as an OUTPUT for OLED communication
oled = SSD1306_12C(128, 64, i2c)
measure=0

finalDistance=0

def getDistance():
trigger.low()
utime.sleep_us(2)
trigger.high()
utime.sleep_us(5)
trigger.low()
while echowvalue() ==

signaloff = utime.ticks_us()

155

PicoBricks Project Book

while echowvalue() ==1:
signalon = utime.ticks_us()
timepassed = signalon - signaloff
distance = (timepassed * 0.0343) / 2
return distance
#calculate the distance
def getMeasure(pin):
global measure
global finalDistance
redLed.value(l)
foriin range(20):
measure += getDistance()
sleep(0.05)
redLed.value(0)
finalDistance = (measure/20) + 1
oled fill(O)
oled.show()
oled.text(“>Digital Ruller<”, 2,5)
oled.text(“Distance “ + str(round(finalDistance)) +" cm”, O, 32)
oled.show()

#print the specified distance to the specified x and y coordinates on the OLED
screen

print(finalDistance)
buzzer.duty_ule(4000)
sleep(0.05)
buzzer.duty_ul6(0)
measure=0
finalDistance=0
#sound the buzzer
button.irg(trigger=machine.Pin.IRQ_RISING, handler=getMeasure)

2.22.7. Arduino C Codes of the Project

#include <Wire.h>

#include “ACROBOTIC_SSD1306.h”"
#include <NewPing.h>

/| define the libraries

#define TRIGGER_PIN 15

#define ECHO_PIN 14

#define MAX_DISTANCE 400

156

PicoBricks Project Book

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);
#define T_B 493

int distance = 0;
int total = O;

void setup() {
pinMode(7,0UTPUT);
pinMode(20,0UTPUT);
pinMode(10,INPUT);
// define input and output pins
Wire.begin();
oled.init();
oled.clearDisplay();

}

void loop() {

delay(50);
if(digitalRead(10) == T){

int measure=0;
digitalWrite(7,HIGH);
tone(20,T_B);
delay(500);
noTone(20);

for (int i=0;i<20;i++){
mMeasure=sonar.ping_cm();

total=total+measure;
delay(50);

}

distance = total/20+6; // calculate the distance
digitalWrite(7,LOW);

delay(1000);

157

PicoBricks Project Book

oled.clearDisplay();
oled.setTextXY(2,1);
oled.putString(“>Digital Ruler<");
oled.setTextXY(5,1);
oled.putString(“Distance:);
oled.setTextXY(5,10);

String string_distance=String(distance);
oled.putString(string_distance);
oled.setTextXY(5,12);

sccr)elgcrj\ putString(“cm”); // print the calculated distance on the OLED

Mmeasure=0;
distance=0;
total=0;
}
}

GitHub Digital Ruler Project Page

http://rbt.ist/ruler

158

2.23. Air Piano

With the development of electronic technology, musical instruments that are
difficult to produce, expensive and producing high-quality sound have been
digitized. Pianos are one of these instruments. Each key of digital pianos produces
electrical signals at a different frequency. Thus, it can play 88 different notes from
its speakers. Factors such as the delay time of the keys of digital instruments, the
quality of the speaker, the resolution of the sound have appeared as the factors
affecting the quality. In electric guitars, vibrations in strings are digitized instead of
keys. On the other hand, In wind instruments, the notes played can be converted
into electrical signals and recorded thanks to the high-resolution microphones
plugged into the sound output. This development in electronic technology has
facilitated access to high-cost musical instruments, music education has gained a
wider variety and spread to a wider audience.

In this project we will make a simple piano that can play 8 notes with PicoBricks. The
speaker of this piano will be the buzzer. The ultrasonic sensor will act as the keys of
the piano.

2.23.1. Project Details and Algorithm

In this project, we will make a piano application using the HC-SRO4 Ultrasonic
distance sensor and the buzzer module on PicoBricks. We will make the buzzer play
different notes according to the values coming from the distance sensor, and we
will create melodies by moving our hand closer to the sensor and away from it. In
addition, we will instantly print the distance played note information on the OLED
screen.

2.23.2. Wiring Diagram

g
q

n
iuiu

HAAARARHRARNR

| HARRAAR

e

o o

159

2.23.3. Coding the Project with MicroBlocks

when started

1000000
o .

initialize local rangeOfPiano o

iniilalize local notes to

initialize local duration to @)

initialize i2c address{hex) €Y reset pinz)

fiip

forever
sot {0 T%) to distance (cm) trigger §E) echo €I
set (250 o

tem

min
rescale distance from ((), rangeOtPianc)to (] . @)
)

(7

ol notes

write Join D distance @ (> ax v D

Inverse
write join note p atx o y @ inverse

play note note l}[:taveorur duration ms

Click to access the project’'s MicroBlocks codes.

2.23.4. Construction Stages of the Project

160

2.23.5. Project Proposal

There is one instant button on PicoBricks. By connecting 7 buttons to Pico, you can
make different notes play when each key is pressed, you can use buttons for octave
value and beat times, and you can develop your piano project.

2.23.6. MicroPython Codes of the Project

from machine import Pin, PWM, 12C
from utime import sleep

import utime

from picobricks import SSD1306_12C
import _thread

#define the libraries

buzzer=PWM(Pin(20,Pin.OUT))
trigger = Pin(15, Pin.OUT)

echo = Pin(14, Pin.IN)

#define the input and Output pins

WIDTH =128
HEIGHT = 64
#OLED screen settings

sda=machine.Pin(4)

161

PicoBricks Project Book

scl=machine.Pin(5)
i2c=machine.l2C(0,sda=sda, scl=scl, freq=1000000)
#initialize digital pin 4 and 5 as an OUTPUT for OLED communication

oled = SSD1306_I12C(WIDTH, HEIGHT, i2c)
measure=0

def getDistance():
trigger.low()
utime.sleep_us(2)
trigger.high()
utime.sleep_us(5)
trigger.low()
while echo.alue() ==
signaloff = utime.ticks_us()
while echowvalue() == 1:
signalon = utime.ticks_us()
timepassed = signalon - signaloff
distance = (timepassed * 0.0343) /2
return distance
#calculate distance

def airPiano():
while True:
global measure

if measure>5 and measure<Il:
buzzer.duty_ul6(4000)
buzzer.freq(262)
sleep(0.4)

elif measure>10 and measure<l1e:
buzzer.duty_ul6(4000)
buzzer.freq(294)
sleep(0.4)

elif measure>15 and measure<21:
buzzer.duty_ul6(4000)
buzzer.freq(330)
sleep(0.4)

162

PicoBricks Project Book

elif measure>20 and measure<26:
buzzer.duty_ul6(4000)
buzzer.freq(349)
sleep(0.4)

elif measure>25 and measure<3l:
buzzer.duty_ul6(4000)
buzzer.freq(392)
sleep(0.4)

elif measure>30 and measure<36:
buzzer.duty_ul6(4000)
buzzer.freq(440)
sleep(0.4)

elif measure>35 and measure<41.
buzzer.duty_ul6(4000)
buzzer.freq(494)
sleep(0.4)

else:
buzzer.duty_ul6(0)

_thread.start_new_thread(airPiano, ())
#play the tone determined by the value of the distance sensor

while True:
measure=int(getDistance())
oled.text(“Distance “ + str(measure)+ “cm”, 5,30)
oled.show()
sleep(0.01)
oled fill(O)
oled.show()

#write the specified texts to the determined x and ye coordinates on the OLED
screen

2.23.7. Arduino C Codes of the Project
#include <Wire.h>

#include “ACROBOTIC_SSD1306.h"

#include <NewPing.h>

163

PicoBricks Project Book

#define TRIGGER_PIN 15
#define ECHO_PIN 14
#define MAX_DISTANCE 400

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);

#define T_C 262
#define T_D 294
#define T_E 330
#define T_F 349
#define T_G 392
#define T_A 440
#define T_B 493

const int Buzzer = 20;

void setup() {
pinMode(Buzzer,OUTPUT),

Wire.begin();
oled.init();
oled.clearDisplay/();

#if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
clock_prescale_set(clock_div_1);
#endif

}

void loop() {

delay(50);
int distance=sonar.ping_cm();

if(distance>5 & distance<1)
{

tone(Buzzer, T_C);

}

else if(distance>10 & distance<16)

{

tone(Buzzer,T_D);

164

PicoBricks Project Book

}

else if(distance>15 & distance<2]1)

{

tone(Buzzer, T_E);

}

else if(distance>20 & distance<206)
{

tone(Buzzer, T_F);

}

else if(distance>25 & distance<31)

{

tone(Buzzer, T_Q);

}

else if(distance>30 & distance<30)
{

tone(Buzzer, T_A);

}

else if(distance>35 & distance<41)

{

tone(Buzzer,T_B);

}

else

{

noTone(Buzzer),

}

oled.clearDisplay();

oled.setTextXY(2,4);
oled.putString(“Distance:);
oled.setTextXY(4,06);

String string_distance=String(distance);
oled.putString(string_distance);
oled.setTextXY(4,8);
oled.putString(“cm”);

165

PicoBricks Project Book

GitHub Air Piano Project Page

http://rbt.ist/piano

166

2.24. Maze Solver Robot

Coding education is as old as the history of programming languages. Today, different
products are used to popularize coding education and make it exciting and fun. The
first of these is educational robots. Preparing and coding robots improves children’s
engineering and coding skills. Robotics competitions are organized by institutions
and organizations to popularize coding education and encourage teachers and
students. One of these competitions is the Maze Solver Robot competitions. These
robots firstly learn the destination by wandering around the maze and return to

the starting point. Then, when they start the labyrinth again, they try to reach their
destination in the shortest way possible. Robots use distance sensors while learning
about the maze. Infrared or ultrasonic sensors are used in these robots.

Smart robot vacuums used in homes and workplaces also work with logic close to
the algorithms of maze-solver robots. Thanks to their algorithms that constantly
check and map the obstacles, they try to do it completely and without crashing.
Most of the smart vacuums are equipped with LIDAR and infrared sensors, which
make high-precision laser measurements for distance measurement and obstacle
detection.

In this project, we will make a simple robot with PicoBricks that you can prepare for
maze solver robot competitions.

2.24.1. Project Details and Algorithm

In the maze solving robot project, we will use the 2WD robot car kit that comes out
of the set. We will use the HC-SRO4 ultrasonic distance sensor so that the robot can
detect the distance in front of it and decide its movements on its own. In the maze,
the robot will detect the distance in front of the car and move forward if it is empty.

If the distance is less than 5 cm, the car will turn right, measure the distance again, if
the distance on the right is greater than 5 cm, it will continue on its way, if it is less, it
will turn left and move forward. In this way, by turning right and left, we will enable
the vehicle to move forward and exit the maze through the empty roads in the maze.

167

PicoBricks Project Book

2.24.2. Wiring Diagram

2.24.3. Coding the Project with MicroBlocks

cafina ~ Burn_lahi

whesdn Stoirtad
: sty b
a=t ETERR v T
PanBiche wul molin m wpnsl lurn mpssad 100 Le 100]
L e o W
st i e
ot IR ETNEEE S T m. walt tem duration | millisccs

LU tm pocd w L

repeat unbl distance {cm) tngger echo i} == ER

ProBncks set moter 4K =peed I 100 w0 100)

T waril ckafing Hurn_yight
ct moor 40D specd 0N [-100 B0 100)

Hurn_ight
FleoErcks sat motor 4287 '..pH:I turmn ;Pﬂﬂl’ |.-1I'JI'J 1o 100]

rHpsHl Ll inlarnoe Jizn g m wa:lue n = ﬂ

walt hem durstlon millisacs

furn kcft

defipee | Tionsand

=ay BRSO

FizaBrichks ssd mudom m wpnel o wpaml 2105 b 108)

Forwnrad

vamil meivs durslion il s

daflne Hi=p

coy {ERTTY b
PicoBnchs set motor @ENEEY sp=ad 8 (-100 to 200}

walt meove duratkon millisecs

Click to access the project’s MicroBlocks codes.

2.24.4, Construction Stages of the Project

168

<
al
In this project, you can build the maze-solving robot car by following the steps you

did for the 2WD robot car assembly in the voice-controlled car project in the section

2.2.18. We will not use the HCO5S bluetooth module in this project. In order to mount

the HC-SRO4 ultrasonic distance sensor on the robot, you can download the required

part from the link here and print from the 3D printer and mount it on the vehicle.

At

1 Ey
X | = B, -
. IV SR D,
N N\
L NTCUBNRRR

After assembling the robot, you can use cardboard boxes to build the maze. You can
make walls out of cardboard, or you can use 3D printed walls to connect the walls
with hot glue to build the maze.

2.24.5. Project Proposal

In this project, by using the HC-SRO4 ultrasonic distance sensor, we enabled the
2WD robot car to exit the maze by moving through the empty roads in the maze.

169

PicoBricks Project Book

By using a servo motor, you can rotate the HC-SRO4 module to the right and left,
and you can detect the empty roads without the vehicle turning and make it move
faster. Or, you can develop the project by mounting 3 HC-SRO4 ultrasonic distance
sensors on the front, right and left parts of the vehicle, measuring the distances in 3
directions at the same time and directing the vehicle towards the empty road.

2.24.6. MicroPython Codes of the Project

from machine import Pin, 12C

from picobricks import MotorDriver
from utime import sleep

import utime

#define libraries

trigger = Pin(15, Pin.OUT)
echo = Pin(14, Pin.IN)
#define sensor pins

i2c = 12C(0, scl=Pin(5), sda=Pin(4)) # Init 12C using pins
motor = MotorDriver(i2c)

motor.dc(1,0,0)
motor.dc(2,0,0)
signaloff =0
signalon =0

def getDistance():
trigger.low()
utime.sleep_us(2)
trigger.high()
utime.sleep_us(5)
trigger.low()
while echowvalue() ==
signaloff = utime.ticks_us()
while echowvalue() == 1:
signalon = utime.ticks_us()
timepassed = signalon - signaloff
distance = (timepassed * 0.0343) / 2
return distance
#calculate distance

measure=0

170

PicoBricks Project Book

while True:
measure=int(getDistance())
print(measure)
if measure>5;
motor.dc(1,255,0)
motor.dc(2,255,0)
sleep(1) #if the distance is higher than 5, the wheels go straight
else:
motor.dc(1,0,0)
motor.dc(2,0,0)
sleep(0.5)
motor.dc(1,255,0)
motor.dc(2,0,0)
sleep(0.5)
measure=int(getDistance())
if measure<5:
motor.dc(1,0,0)
motor.dc(2,0,0)
sleep(0.5)
motor.dc(1,0,0)
motor.dc(2,255,0)
sleep(0.5)

#If the distance is less than 5, wait, move in any direction; if the distance is less
than 5, move in the opposite direction

2.24.7. Arduino C Codes of the Project
#include <Wire.h>

#define trigPin 15
#define echoPin 14
#tdefine MAX_DISTANCE 400

long distance = 0;
long duration = 0;

int hesr(){
long dis, dur;
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);

171

PicoBricks Project Book

delayMicroseconds(10);
digitalWrite(trigPin, LOW);
dur = pulseln(echoPin, HIGH);
dis = (dur/2) / 297,

return dis;

void setup() {

void loop() {
delay(50);
distance = hcsr();
Forward();
if(distance<5){
Stop();
delay(1000);
Right();
delay(1000);
distance = hcsr();
if(distance < 5){
Stop();
delay(1000);
Left();
delay(500);

// If the distance is less than 5, wait, turn right; if the distance is less than 5 again,
move in the opposite direction

}
}
}

void dc(int dcNumber, int speed, int direction){
Wire.beginTransmission(0x22);
Wire.write(0x26);
Wire.write(dcNumber);
Wire.write(speed);
Wire.write(direction);
int cs = dcNumber A speed A direction;
Wire.write(cs);
Wire.endTransmission();

172

PicoBricks Project Book

void Forward(){ //if the distance is higher than 5, go straight
dc(1,255,1);
dc(2,255,1);

}

void Left(){ /turn left
dc(1,0,1);
dc(2,255,1);

}

void Right(){ //turn right
dc(1,255,1);
dc(2,0,1);

}

void Stop(){
dc(1,0,1);
dc(2,0,1);

}

}

GitHub Maze Solver Robot Project Page

http://rbt.ist/solverrobot

173

2.25. Smart Greenhouse

The rapid changes in climate due to the effect of global warming cause a decrease
in productivity in agricultural activities. In the 1500s, Daniel Barbaro built the

first known greenhouse in history. Greenhouses are suitable environments for
growing plants that can provide controllable air, water, heat and light conditions.
In greenhouses, heaters are used to balance the heat, electric water motors for
irrigation, fans are used to regulate humidity and to provide pollination. With the
development of technology, the producer can follow the status of the greenhouse
with his phone from anywhere and can do the work that needs to be done. The
general name of this technology is Internet of Things (IOT).

Special sensors are used to measure temperature, humidity and oxygen content in
greenhouses. In addition, special sensors measuring soil moisture are used to decide
on irrigation. Electronically controlled drip irrigation systems are used to increase
irrigation efficiency.

In this project, we will prepare a simple greenhouse with IOT technology and
PicoBricks. We will use PicoBricks with the ESP8266 wifi module in this greenhouse.
In this way, we will turn the greenhouse into an object that we can track over the
Internet.

2.25.1. Project Details and Algorithm

The greenhouse model you will prepare will include a soil moisture sensor, and a
DHT11 temperature and humidity sensor hanging from the top. A submersible pump
will be placed in the water tank outside the model, and the hose coming out of the
end of the pump will go to the ground in the greenhouse. Picoboard will be placed
in a suitable place outside the greenhouse model.

When Picobricks starts, it starts to broadcast wifi thanks to the ESP8266 wifi module.
When we enter the IP address of Esp8266 from the smart phone connected to the
same network, we encounter the web page where we will control the Greenhouse.
Here we can see the temperature and humidity values. If we wish, we can start the
irrigation process by giving the irrigation command.

174

PicoBricks Project Book

2.25.2. Wiring Diagram

2.25.3. Coding the Project with MicroBlocks

Sdihz 3ZIDone Pozawedwhh woor domw.

Igisen s il astale sl w0t

Subio el s s sy sls SEHAGR sulie ol

MO S W I | W % oot 0 soured.

srhise. you T xloethe OO da atd sklan vades.
colnant deliun GORESpONse meaponse

TR R R R T AT R PR TRCH | PR T] | [
InllzeSespor e Al Axs 0 iy Bl
il = il al
T T TR e R S N T P TR . ‘ i m "
[T AT TR (TR v R
respond st to HTTP reguest with body

il of renpoe 4 b

wbee it | SET = item R ol | renpor

initpdize kacal reply to em @EIEN ot reaponse

cammant
Fofnomscr 12 Use p2ur ictwdrsro e (2500 ard cossws D b on

Wi cennect b [N pas=word fEERITETOE
IntolzaRaspon

set ETRN o

inilinlion loenl anguesl (o i fein raply IS FlecEfdcks bamparatura |Gl

e TR 1

RESITRETRY PicoBncha humidity T ETRITEY

PlooBricks pobavt omasar dr

et TR) 10 HTTF server request respond EEEN W to HTTP request with body reply 4 b

i eequent 2)

for responsc In responscs

aa it PP = tum S o resporsa

It
13 HTTP ameguers] with ety

poulls of amcueesl | pmipat - = ilem @R of amsponss

i rem R} ot response

it Swatber then (ZIEEN o= MZTETD EED 4k

doFesponse | responss

]
oo IRy

Ari5404 e Faonc
ip
k

walt gl millsecs

Click to access the project’'s MicroBlocks codes.
Click to download the required Android app.

Click for MIT App Inventor File.

175

PicoBricks Project Book

2.25.4. Construction Stages of the Project

1-Detach the floor of the Greenhouse model from the SR-2 coded part in the
Greenhouse Kit.

176

PicoBricks Project Book

3- Remove the inner walls of the greenhouse from the SR-4 part and attach it to the
ground of the greenhouse.

4- Remove the Greenhouse arches in SR-1and S-R-3 and place them on the
greenhouse floor.

PicoBricks Project Book

5-Cover the rectangular area where soil will be placed with cling film. After irrigation,
you will protect the model parts. Pour the plant soil into the greenhouse. Fill so that
there is no empty space.

7-Thread the remaining two thin flat pieces of SR-4 through the holes on both sides
of the greenhouse from the underside. This process makes the greenhouse more
robust.

8- Pass the hose to the submersible pump. You will install an irrigation system similar

to the drip irrigation system in the greenhouse. Pass the hose where you want the

soil to be irrigated. Remember to cut the hose just enough to reach the water tank.
EREEEEEr

B T
; ;

gEEr
— T .)

179

al

9- Place the DHTI11 temperature and humidity sensor on the greenhouse model and
the Soil Moisture Sensor in the soil.

7201 A3

10- Plug the Soil Moisture sensor to the pin number GPIO27 on the Picoboard

and connect the 2 pen battery to the power input of the Picoboard. Place the
submersible pump and the end of the hose in a deep container of water. Be careful
not to get the motor drive wet.

180

PicoBricks Project Book

2.25.5. Project Proposal

In the smart greenhouse project, by adding an OLED screen to the greenhouse
entrance, you can monitor the humidity and temperature values inside, and by
adding sensors such as MQ2 gas sensor, carbon dioxide sensor, air quality sensor,
you can monitor the weather inside the greenhouse via WiFi with your mobile
phone. In addition, by adding a DC fan and relay to the greenhouse, you can turn
the ventilation on and off according to the indoor air quality with a mobile phone via
WiFi.

2.25.6. MicroPython Codes of the Project

import utime

import uos

import machine

fromm machine import Pin, ADC, 12C

from picobricks import SHTC3, MotorDriver

from utime import sleep

i2c = 12C(0, scl=Pin(5), sda=Pin(4)) # Init 12C using pins
motor = MotorDriver(i2c)
shtc_sensor = SHTC3(i2c)

smo_sensor=ADC(27)
motor.dc(1,0,0)

print(“Machine: \t” + uos.uname()[4])
print(“MicroPython: \t” + uos.uname()[3])

uartO = machine.UART(O, baudrate=115200)
print(uartO)

def Connect_WiFi(cmd, uart=uartO, timeout=5000):
print(“CMD: * + cmd)
uart.write(cmd)
utime.sleep(7.0)
Wait_ESP_Rsp(uart, timeout)
print()

def Rx_ESP_Datal():
recv=bytes|)
while uartO.any/()>0:
recv+=uartO.read(1)
res=recv.decode(‘utf-8’)

181

PicoBricks Project Book

return res

def Send_AT_Cmd(cmd, uart=uartO, timeout=2000):
print(“CMD: * + cmd)
uart.write(cmd)
Wait_ESP_Rsp(uart, timeout)

print()

def Wait_ESP_Rsp(uart=uartO, timeout=2000):
prvMills = utime.ticks_ms()

resp = b""
while (utime.ticks_ms()-prvMills)<timeout:
if uart.any():
resp = b"" join([resp, uart.read(1)])
print(“resp:”)
try:

print(resp.decode())
except UnicodeError:
print(resp)

Send_AT_Cmd(‘AT\n\n’) #Test AT startup
Send_AT_Cmd(‘AT+GMR\\n’) #Check version information
Send_AT_Cmd(‘AT+CIPSERVER=0\r\n")

Send_AT_Cmd(‘AT+RST\r\n’) #Check version information
Send_AT_Cmd(‘AT+RESTORE\r\n') #Restore Factory Default Settings
Send_AT_Cmd(‘AT+CWMODE\N\n') #Query the WiFi mode
Send_AT_Cmd(‘AT+CWMODE=1\r\n') #Set the WiFi mode = Station mode
Send_AT_Cmd(‘AT+CWMODE\N\n') #Query the WiFi mode again
Send_AT_Cmd(‘AT+CWJIAP="ID","Password”"\r\n’, timeout=5000) #Connect to AP
utime.sleep(3.0)

Send_AT_Cmd(‘AT+CIFSR\r\n') #Obtain the Local IP Address
utime.sleep(3.0)

Send_AT_Cmd(‘AT+CIPMUX=1\r\n")

utime.sleep(1.0)

Send_AT_Cmd(‘AT+CIPSERVER=1,80\r\n") #Obtain the Local IP Address
utime.sleep(1.0)

while True:
res =”"
res=Rx_ESP_Datal)

utime.sleep(2.0)

182

PicoBricks Project Book

if +IPD’ in res: # if the buffer contains IPD(a connection), then respond with HTML
handshake

id_index = res.find(‘+IPD’)

if /WATERING' in res:
print(‘lrrigation Start’)
motor.dc(1,255,0)
utime.sleep(10)
motor.dc(1,0,0)
print(‘lrrigation Finished’)
connection_id = res[id_index+5]
print(“connectionld:” + connection_id)
print (! Incoming connection - sending webpage’)
uartOwrite('AT+CIPSEND="+connection_id+,200"+\r\n’)
utime.sleep(1.0)
uartO.write(‘'HTTP/1.1 200 OK'+'\r\n’)
uartO.write(‘Content-Type: text/htm!l'+'\r\n’)
uartO.write(‘Connection: close'+'\r\n’)
uartO.write("+'\r\n’)
uartO.write('<IDOCTYPE HTML>'+'\r\n")
uartO.write(‘'<shtmI>+\r\n’)
uartO.write('<body><center><HI>CONNECTED...
</H1></center>'+\r\n’)
uartO.write(‘'<body><center><H1>Irrigation Complete.
</H1></center>'+'\

r\n’)

uartO.write('</body></htmI>"+'\r\n’)
elif /SERA in res:

temp = shtc_sensor.temperature()
hum = shtc_sensor.humidity()
smo = round((smo_sensor.read_ul6()/65535)*100)
sendStr="\"TEMP\"{}, 'Humidity\":{}, \"'S.Moisture\":{}%".format(temp,hum,smo)
sendText="{"+sendStr+"}"
strLen=46+len(sendText)
connection_id = res[id_index+5]
print(“connectionld:” + connection_id)
print (! Incoming connection - sending webpage’)
atCmd="AT+CIPSEND="+connection_id+","+str(strLen)
uartO.write(@atCmd+'\r\n’)
utime.sleep(1.0)
uartO.write('HTTP/1.1 200 OK'+\r\n')
uartO.write(‘Content-Type: text/html'+'\r\n’)
uartO.write("+'\r\n’)
uartO.write(sendText+'\r\n’)

183

PicoBricks Project Book

elif /" in res:
print(“resp:”)
print(res)
connection_id = res[id_index+5]
print(“connectionld:” + connection_id)
print (! Incoming connection - sending webpage’)
uartO.write('AT+CIPSEND="+connection_id+',200'+'\r\n’)
utime.sleep(3.0)
uartO.write(‘'HTTP/1.1 200 OK'+\r\n")
uartO.write(‘Content-Type: text/htm!'+'\r\n’)
uartO.write(‘Connection: close’+'\r\n’)
uartO.write("+\r\n’)
uartO.write('<IDOCTYPE HTML>'+'\r\n’)
uartO.write(‘'<shtmI>"+\r\n’)
uartO.write('<body><center><HI>CONNECTED.
</H1></center>'+\r\n’)

u rtO.writegt‘<cenR r><h4>INFO:Get Sensor Data</br>WATERING:Run Water
Pump</h4></center>'+' ?\n’)

uartO.write('</body></htmI>"+'\r\n’)
utime.sleep(4.0)

Send_AT_Cmd(‘AT+CIPCLOSE="+ connection_id+'\r\n') # once file sent, close
connection

utime.sleep(3.0)
recv_buf="" #reset buffer
print ("Waiting For connection...)

nn

2.25.7. Arduino C Codes of the Project
#include <Wire.h>

#define RX O
#define TX 1

#tdefine LIMIT_TEMPERATURE 30

#define smo_sensor 27

#define DEBUG true

int connectionld;

void dc(int dcNumber, int speed, int direction){

Wire.beginTransmission(0x22);
Wire.write(0x26);

184

PicoBricks Project Book

Wire.write(dcNumber);
Wire.write(speed);
Wire.write(direction);

int cs = dcNumber A speed A direction;
Wire.write(cs);
Wire.endTransmission();

void shtc_init(){
Wire.beginTransmission(0Ox70);
Wire.write(Ox35);
Wire.write(0x17);
Wire.endTransmission();
delay(500);
Wire.beginTransmission(0Ox70);
Wire.write(OXEF);
Wire.write(OxC8);
Wire.endTransmission();
delay(500);
Wire.requestFrom(0x70, 3);

float temperature(){

int rcvl =0;
intrcv2 =0;
Wire.beginTransmission(0Ox70);
Wire.write(Ox78);
Wire.write(Ox66);
Wire.endTransmission();
delay(100);
Wire.requestFrom(0x70, 2);
while(Wire.available()) {

rcvl = Wire.read();

rcv2 = Wire.read();
}
delay(100);
float temp = (((4375 * ((revl << 8) | rcv2)) >>14) - 4500) /100;
return temp;

float humidity(){

185

PicoBricks Project Book

int rcvl = 0;
intrcv2 =0;
Wire.beginTransmission(0Ox70);
Wire.write(0x78);
Wire.write(0x606);
Wire.endTransmission();
delay(100);
Wire.requestFrom(0x70, 2);
while(Wire.available()) {

rcvl = Wire.read();

rcv2 = Wire.read();
}
delay(100);
return (((4375 * ((rcvl << 8) | rev2)) >> 14) - 4500) /100;

}

void setup() {
Seriall.begin(115200);
pinMode(smo_sensor, INPUT);
shtc_init();

sendData(“AT+RST\\n", 2000, DEBUG); // reset module
sendData(“AT+GMR\r\n"”, 1000, DEBUG); // configure as access point
sendData(“AT+CIPSERVER=0\r\n", 1000, DEBUG); // configure as access point
sendData(“AT+RST\r\n"”, 1000, DEBUG); // configure as access point
sendData(“AT+RESTORE\r\n", 1000, DEBUG); // configure as access point
sendData(“AT+CWMODE?\r\n", 1000, DEBUG); // configure as access point
sendData(“AT+CWMODE=1\r\n", 1000, DEBUG); // configure as access point
sendData(“AT+CWMODE?\r\n", 1000, DEBUG); // configure as access point

sendData(“AT+CWIAP=\"WIFI_ID\"\'"WIFI_PASSWORD\"\r\n", 5000, DEBUG); // ADD
YOUR OWN WIFI ID AND PASSWORD

delay(3000);

sendData(“AT+CIFSR\r\n", 1000, DEBUG); // get ip address

delay(3000);

sendData(“AT+CIPMUX=1\r\n", 1000, DEBUG); // configure for multiple connections
delay(1000);

sendData(“AT+CIPSERVER=1,80\r\n", 1000, DEBUG); // turn on server on port 80
delay(1000);

void loop() {
if (Seriall.find(“+IPD,")) {

186

PicoBricks Project Book

delay(300);

connectionld = Seriall.read() - 48;

String seriallncoming = Seriall.readStringUntil(‘\r');
Serial.print(“SERIAL_INCOMING:");
Serial.printIn(seriallncoming);

if (serialincoming.indexOf(*/WATERING") > 0) {
Serial.printIn(“Irrigation Start”);
dc(1,255,1);
delay(1000); // 10 sec.
dc(1,0,1);
Serial.printIn(“Irrigation Finished");
Serial.printIn("! Incoming connection - sending WATERING webpage”);
String html =",
html += “<html>";
html += “<body><center><H1>Irrigation Complete.
</H1></center>";
html += “</body></htmI>";
espsend(html);
}
if (serialincoming.indexOf(*/SERA") > 0) {
delay(300);

float smo = analogRead(smo_sensor);

float smopercent = (460-smo)*100.0/115.0 ; /min ve max dederleri dedisken.
Serial.print(“SMO: %");

Serial.printin(smo);

float temp = temperature();
Serial.print(*Temp: “);
Serial.printIn(temp);

float hum = humidity();
Serial.print(“Hum: *);
Serial.printin(hum);

Serial.printIn(“! Incoming connection - sending SERA webpage”);
String html =",

html += “<html>";

html += “<body><center><HI>TEMPERATURE
</H1></center>";
html! += “<center><H2>";

html += (String)temp;

187

PicoBricks Project Book

html += “ C
</H2></center>";

html += “<body><center><HI1>HUMIDITY
</H1></center>";
html! += “<center><H2>";

html += (String)hum;

html += “%
</H2></center>":

html += “<body><center><H1>SMO
</H1></center>",
html! += “<center><H2>";

html += (String)smopercent;

html += “%
</H2></center>":

html += “</body></htmI>";
espsend(html);
}
else
Serial.printIn(*! Incoming connection - sending MAIN webpage”);
String html =",
html += “<html>";
htm! += “<body><center><H1>CONNECTED.
</H1></center>";

html += “<center><h4>INFO:Get Sensor Data</br><a href=//
WATERING'>WATERING:Run Water Pump</h4></center>";

html += “</body></htmI>";
espsend(html);

String closeCommand = “AT+CIPCLOSE="; /////llll////lclose the socket connection////
esp command

closeCommand += connectionld; // append connection id
closeCommand += “\r\n”;
sendData(closeCommand, 3000, DEBUG);

}

}

T lsends data from ESP to webpage//iIITTTTTTTTTTTTITIT

void espsend(String d)

{
String cipSend = * AT+CIPSEND=";
cipSend += connectionld,
cipSend +="7",
cipSend += d.length();
cipSend +=“\r\n";
sendData(cipSend, 1000, DEBUQG);
sendData(d, 1000, DEBUQ);

188

PicoBricks Project Book

}

W Igets the data from esp and displays in serial monitor////11ITTTTTTTTTTTTT
String sendData(String command, const int timeout, boolean debug)
{
String response = “";
Seriall.print(command);
long int time = millis();
while ((time + timeout) > millis())
{
while (Seriall.available())
{
char c = Seriall.read(); // read the next character.
response +=c;
}
}

if (debug)
{

Ser{al.print(response); //displays the esp response messages in arduino Serial
monitor

}

return response;

}

GitHub Smart Greenhouse Project Page

http://rbt.ist/greenhouse

189

PicoBricks Project Book

3. Resources

MicroBlocks Web Site: http://microblocks.fun/

3.1. 3D Models
3.1.1 Two Axis Robot Arm Project 3D Parts

Download

3.1.2. Piggy Bank Project 3D Parts

Original project page

Updated 3D illustrations:

Download

3.1.3. Trash Bin

Project page

3.1.4. Maze Solving Robot Project 3D Parts

Project page

3.4. Android Apps
3.4.1. Greenhouse Control Android App(.apk)

Download

3.4.2. Sera Control MITAppIlnventor 2 Project File

Download

3.4.3. Voice Controlled Robot Car Project Android App (.apk)

Download

190

“If you want to find the secrets of the universe, think in
terms of energy, frequency and vibration.”
Nikola Tesla

