
U
p

d
at

e:
 12

 D
ec

. 2
0

22
 V

er
. 1

.15

Copyright © 2022 Robotistan

All rights reserved. It is strictly forbidden to copy, reproduce, use, publish and
distribute the text, photographs and other content in this book, in whole or in part,

without permission, except for individual use.

Contents: Mustafa Kemal Avcı, Abdullah Kaya

Translation: Naze Gizem Özer

Design: Ahmet Gürsu

Pico Bricks Developer Team

Yasir Çiçek - Project Manager

Yusuf Gündoğdu - Software Developer

Mehmet Suat Morkan - Chief Developer

Mehmet Ali Dağ - Hardware Developer

Powered by

John Maloney · Turgut Güneysu · Kathy Giori · Bernat Romagosa

Update: 12 Dec. 2022 Ver. 1.15

PicoBricks Project Book

3

CONTENTS

 What Is Pico Bricks? 4
1. Development Environments 6

1.1. MicroBlocks Block Programming Language 6
1.1.1. Interface Introduction 7
1.1.2. MicroBlocks-Picobricks Connection and Operation 9

1.2. Thonny (MicroPython) IDE for Beginners 13
1.2.1 Thonny IDE Setup 13
1.2.2. Thonny IDE Interface 13
1.2.3. Upload MicroPython Firmware to Raspberry Pi Pico 14
1.2.4. Installing and Running Code on Raspberry Pi Pico 15

1.3. Arduino IDE 17
1.3.1. Writing and Running Code with Arduino IDE 18
1.3.2. How to Add Arduino Library? 20

2. PROJECTS 22
2.1. Blink 23
2.2. Action - Reaction 27
2.3. Autonomous Lighting 31
2.4. Thermometer 38
2.5. Graphic Monitor 44
2.6. Dominate the Rhythm 49
2.7 Show Your Reaction 60
2.8. My Timer 68
2.9. Alarm Clock 78
2.10. Know Your Color 85
2.11. Magic Lamp 97
2.12. Smart Cooler 101
2.13. Buzz Wire Game 106
2.14. Dinosaur Game 115
2.15. Night and Day 120
2.16. Voice Controlled Robot Car 132
2.17. Two Axis Robot Arm 140
2.18. Smart House 154
2.19. Glutton Piggy Bank 161
2.20. Confirming Door 168
2.21. Automatic Trash Bin 182
2.22. Digital Ruler 188
2.23. Air Piano 196
2.24. Maze Solver Robot 205
2.25. Smart Greenhouse 213
3. Bibliography 233

PicoBricks Project Book

4

What Is Pico Bricks?
Pico Bricks is an electronic development board + software which is designed for use in
maker projects. With ten detachable modules included, Pico Bricks can be used to
create a wide variety of projects. It also includes a protoboard that you can use to add
your own modules!

Pico Bricks is for everyone interested in electronics and coding. Beginners with no
prior experience will find it easy to get started thanks to the modular hardware design,
Scratch-like block coding environment, and simulator. Those with experience can dig
more deeply into electronics or explore coding in Python. And even the most expert
makers will appreciate how quickly they can
explore ideas and create prototypes with
Pico Bricks.

Unlike other boards, Pico Bricks has an
incredible amount of flexibility for every
level of makers! Bricks IDE has example
codes for different scenarios.

Learn coding from zero to hero with
MicroBlocks or the Pico Bricks’s drag-n-
drop, block coding builder. MicroBlocks
is the easiest coding experience ever
created and widely known in the maker
industry.

Have a question? You can find more information here.

PicoBricks Project Book

5

DEVELOPMENT
ENVIRONMENT

PicoBricks Project Book

6

1. Development Environments

In software, web and mobile application development, the development
environment is a workspace with a set of processes and programming tools used
to develop the source code for an application or software product. Development
environments enable developers to create and innovate without breaking
something in a live environment. You can code Picobricks using both text-based
and block-based editors. MicroBlocks is a powerful editor with which you can code
Picobricks with blocks.

Thonny editor is a free, dedicated IDE(integrated development environment) for
Python designed for beginners and one of the best choices for those who are just
starting to learn MicroPython. Whether you just code MicroPython or code an
electronic circuit board, Thonny provides you with a lot of support.

Arduino IDE is an open-source software, designed by Arduino.cc and mainly used for
writing, compiling & uploading code to almost all Arduino Modules. It is an official
Arduino software, making code compilation too easy that even a common person
with no prior technical knowledge can get their feet wet with the learning process. If
you are proficient in Arduino C language or want to learn C language, Picobricks and
Arduino IDE will be very good choices for you.

1.1. MicroBlocks Block Programming Language

MicroBlocks is a free, Scratch-like blocks programming language for learning
physical computing with educational microcontroller boards such as the micro:bit,
Adafruit Circuit Playground Express, and many others. MicroBlocks is a live
environment. Click on a block and it runs immediately, right on the board. Try out
commands. See and graph sensor values in real time. No more waiting for code to
compile and download. Want to display an animation while controlling a motor? No
problem! MicroBlocks lets you write separate scripts for each task and run them at
the same time. Your code is simpler to write and easier to understand. MicroBlocks
runs on many different boards, but your scripts are portable. Buttons, sensors, and
display blocks behave the same on all boards with the relevant hardware.Once you
run the codes in MicroBlocks, you can disconnect the USB and feed the Picobricks
with a different power source. The codes on the card will work automatically. You can
use Thonny IDE and Arduino IDE to code Picobricks in text-based.

To code Picobricks with MicroBlocks, let’s open https://microblocks.fun/ in the
browser (Google Chrome and Edge browsers are recommended).

PicoBricks Project Book

7

You don’t need to install anything to run MicroBlocks in a Chrome or Edge browser;
you can run the online editor by clicking the Run button in the menu at the top
right of the screen. By clicking the Download button, you can download the version
suitable for your operating system and install it on your computer.

You can save MicroBlocks Web editor in your browser and use it without internet
access. Run MicroBlocks in your browser to register the MicroBlocks Web app, then
click the install button in the upper-right corner of your browser’s URL bar.

Google Chrome Microsoft Edge

1.1.1. Interface Introduction

When you open the MicroBlocks program, an interface like the image will greet you.
You can review the detailed explanation of the program interface below.

PicoBricks Project Book

8

1. Menu Bar (): In this section, the first button from left to right
allows us to change the language option of the program. The second button is the
menu where we can see the advanced MicroBlocks code options and the firmware
update is done while the third button offers the save options. The fourth button
opens a graph window used by the graph block to plot the data, while the fifth
rightmost button is used to connect to Picobricks.

2. Block Categories: This field contains the categories of blocks used for
programming in MicroBlocks. Categories are grouped using different colors for each
category. As the categories are selected, the relevant blocks in that category will be
listed in the Block 3 field in the Palette.

3. Block Palette: As selections are made in the Block categories field, blocks with
specific functions will be listed in this field. Codes are written by dragging and
dropping the blocks in this area to the Scripting area number 4.

4. Scripting Area: This is the area where all coding activities take place. User drag
and drop blocks into this area to create scripts and custom blocks (functions).

5. Start/Stop Buttons (): This area contains two icons, Start and Stop, which
are used to control the MicroBlocks programs.

6. Library List (): In this area, there are libraries that are loaded
depending on the requirements of user scripts and micro-devices.

PicoBricks Project Book

9

1.1.2. MicroBlocks-Picobricks Connection and Operation

Connect the board to your computer while holding down the white BOOTSEL
button.

From the MicroBlocks menu (gear icon), select update firmware on board.

Firmware installation takes just a few seconds. If you are running the MicroBlocks
app, MicroBlocks will connect to the board automatically when it is done.

Extra Steps in Browser

If you are running MicroBlocks in the browser or as a web app, you need to help
the browser. For security reasons, the browser cannot access the board’s USB drive
without asking the user.

First, select your board type from the menu.

PicoBricks Project Book

10

You’ll be asked to select the USB drive for the board in the browser’s file save dialog.

Follow the instructions to save the firmware file on your board. When the file is saved
(just a few seconds), click to USB icon to connect to it.

 Clicking the Connect button will display the system USB ports where
the micro devices are plugged in. In this window, you can connect Picobricks to
MicroBlocks by first selecting the Pico device and then clicking the Connect buttons.
When the connection is successful, a green circle will appear behind the USB icon.

PicoBricks Project Book

11

MicroBlocks is a real-time coding editor.
There is no process of compiling and
uploading the codes to the card after
they are written. When you click on the
code blocks, the codes will run. First,
you need to import Picobricks’ library
into the Microblocks editor. You have to
click the Add Library button for this.

In the File Open window that opens, click the Kits and Boards button to open the list
of devices that you can code with Microblocks.

Click PicoBricks.ubl from the drop-down list, and then click the Open button.

If all went well, the PicoBricks library and code blocks will be displayed in the Code
blocks panel.

PicoBricks Project Book

12

Now let’s run our first code. First, drag and drop the when started block in the
control menu to the code writing area. Then drag the Picobricks set red LED block
from the Picobricks category and add it below the when started block. When you
press the start button, you will see the red led on the Picobricks light up.

 After editing your codes in MicroBlocks, when you click the Start button, your
codes will be installed into Picobricks and run.

 The Stop button stops the codes from running. But the codes uploaded to
Picobricks are not deleted. You can disconnect USB, run Picobricks with external
power supply.

If you have previously uploaded the necessary firmware file to encode Picobricks
with MicroBlocks to Pico, you can connect by clicking the USB icon. If you are going
to connect MicroBlocks Picobricks for the first time, you can follow the steps in
heading 1.1.2.

For detailed information on using the Microblocks editor, visit:

https://wiki.microblocks.fun/ide

PicoBricks Project Book

13

 1.2. Thonny (MicroPython) IDE for Beginners

At the heart of Picobricks is the Raspberry Pi Pico.
The Thonny Raspberry Pi is a great choice for
coding Pico and therefore Picobricks.

1.2.1 Thonny IDE Setup

Visit https://thonny.org/ Select the version suitable for your system and download it
to your computer. Then perform the installation. You can also install the Thonny IDE
using the command “ $ pip install thonny “

1.2.2. Thonny IDE Interface

When you start Thony, you will see a
window like the one below. We will
write our codes in part 1. In part 2, we
will see the outputs of our codes.

A: Opens an empty script file.

B: Allows you to open an existing code file.

C: Allows you to save changes to the code file you are working on.

D: Runs the code you wrote in the interpreter environment you specify.

E: Allows you to check for errors in your code.

F: Allows you to run lines of code in order to debug.

PicoBricks Project Book

14

G: Lets you navigate through the commands in the line of code while debugging.

H: Lets you exit debug.

I: Allows you to switch from debug mode to run mode.

J: Makes the code stop executing.

1.2.3. Upload MicroPython Firmware to Raspberry Pi Pico

In order for Raspberry Pi Pico to understand the MicroPython codes we will write, we
must install a special operating system for it. We call this firmware. Open the Thonny
editor and click Select interpreter from the Run menu.

Select the Raspberry Pi Pico from the drop-down list shown in area 1. Leave the 2nd
area as in the image, click on the 3rd area.

Connect Pico to your computer’s USB port with a cable while holding down the
white bootsel button on it.

PicoBricks Project Book

15

After the Install button is activated, you can release the button. Press the Install
button and wait for the firmware to load.

After the installation is complete, click the Close button to complete the installation.

1.2.4. Installing and Running Code on Raspberry Pi Pico

Plug the Pico’s cable directly into the computer’s USB port. You don’t need to hold
down the Bootsel button. Select the Select interpreter option from the Run menu
in Thonny. Make sure Raspberry Pi Pico is selected in section 1. Click the OK button to
close the window.

PicoBricks Project Book

16

Activate the Files option from the View menu. A
long file explorer tab will be placed on the left side
of the screen. If you see Raspberry Pi Pico in
section 1, it means that it is connected to Thonny
Pico without any problems, you are ready to write,
save and run your code. The part number 2 behind
the menu is the file explorer area that shows the
working directory on your computer.

The MicroPython codes you wrote in Thonny
consist of libraries arranged for Raspberry Pi Pico
and similar micro control cards and are called
MicroPython. The syntax and almost all libraries
work the same as MicroPython.

The “hello world” application of the software world
is the “blink” application to physical programming.
Write down the code shown in field 1. Click the save
button in area 2. Thonny will ask you in the window
in area 3 whether you want to save your code in
the working directory on your computer or in Pico’s
onboard memory. If you choose your computer, the
resulting file will appear in field 4, and if you choose
Pico, the resulting file will appear in field 5.

PicoBricks Project Book

17

Select Raspberry Pi Pico from the Save in window, type “blink.py” in the File Name
field and click the OK button.

After seeing the “blink.py” file in Pico’s
file explorer, click the F5 key on the
keyboard or the green Run button on
the toolbar, and the code file will be run
by Pico. If you see the internal LED on
the Pico blinking at 1 second intervals,
you have successfully written and run
your first code. Congratulations :)

An important note: If you want the
code you have written to run as soon
as Pico is opened without giving a run
command, you should save your code
in Pico’s main directory with the name
“main.py”.

1.3. Arduino IDE
Picobricks offers us the opportunity to code with Arduino C. Getting started coding
the Raspberry Pi Pico at the heart of Picobricks with the widely used Arduino IDE is
pretty easy.

Download the Arduino IDE 1.8.x setup file from https://www.arduino.cc/en/software
to your computer and install it.

First you need to add Raspberry Pi Pico to Arduino IDE. Start the Arduino IDE. Then
go to Tools>Board>Boards Manager.

PicoBricks Project Book

18

Write “Raspberry Pi Pico” in field 1. After waiting for a while, click on the Arduino
Mbed OS RP2040 Boards option and click the install button in field 2

During all these installations, you must accept the approvals it will ask you for. When
the installation is complete and click the close button, you will have added Pico to
the Arduino IDE.

1.3.1. Writing and Running Code with Arduino IDE

When you want to code Pico with Arduino IDE, you just have to connect it to your
computer by holding the BOOTSEL button for the first time.

PicoBricks Project Book

19

In this way, Pico will be connected in bootloader mode and recognized by your
computer as external memory. Connect Pico to your computer by holding down the
Bootsel button. After seeing Pico as the computer’s flash memory, activate your card
by going to Tools>Board>Arduino Mbed OS RP2040 boards> Raspberry Pi Pico.

Write the code in the field number 1 below and follow the File>Save path and save it
anywhere on your computer with the name “Blink”.

After the saving process, we must click the “Upload”
button in the 1st field to compile the code and save it
in Pico. When we see Done uploading at the bottom,
our code will run in Pico and the built-in LED will
blink at 1-second intervals. Important Note: While
coding Picobricks with Arduino IDE, connect it to
your computer by pressing the BOOTSEL button at
the first pass from Micropython or Microblocks
firmware. You do not need to press BOOTSEL for
subsequent code uploads. Enjoyable projects :)

PicoBricks Project Book

20

1.3.2. How to Add Arduino Library?

To install a new library into your Arduino IDE you can use the Library Manager. Open
the IDE and click to the “Tools” menu and then Tools > Manage Libraries.

Then the Library Manager will open and you will find a list of libraries that are already
installed or ready for installation.

Search for the library you want to install by typing its name, then select the version of
the library. Finally, click the “install” button and wait for it to install.

Installing the library depends on your connection speed. When the installation is
complete, you will start to see “INSTALLED” next to the library. In this way, you can
easily install the libraries you need according to the codes you have written or the
project you have made.

We define our library as shown below.

PicoBricks Project Book

21

PicoBricks Project Book

22

 PROJECTS

PicoBricks Project Book

23

2.1. Blink

 In real life, the employee, who has just started to learn the job, first undertakes
the most basic task.The cleaner first learns to use the broom, the cook learns to
use the kitchen utensils, the waiter to carry a tray. We can increase these examples.
The first code written by newcomers to software development is known as “Hello
World”. Printing “Hello World” as soon as the program starts on the screen or
console window in the language they use is the first step in programming. Like
a baby starting to crawl… The first step to robotic c oding, also known as physical
programming, is the Blink application. It means winking at robotic coding. By simply
connecting an LED to the circuit board, the coding is made to keep the LED blinking
continuously. Ask people who have developed themselves in the field of robotic
coding how they got to this level. The answer they will give you starts like this; it all
started with a flashing LED!

LEDs are the language of electronic devices. Thanks to the LEDs, the programmer
tells the users at which stage of the task the device is, what the problem is, if any,
and which options are active. In this project, you will learn the types of LEDs on it
with Picobricks and learn how to flash them.

2.1.1. Project Details and Algorithm

There are 1 x 5mm red LED and 1 x WS2812B RGB LED on Picobricks. While normal
LEDs can light up in one color, RGB colors can light up in different colors, both
primary and secondary colors. In this project we will use the red LED on Picobricks.

In the project, we will write the necessary codes to turn on the red LED on Picobricks,
turn it off after a certain time, turn it on again after a certain time, and repeat these
processes continuously.

2.1.2. Wiring Diagram

You can code and run Picobricks’ modules without wiring. If you are going to use
the modules by separating them from the board, you should make the module
connections with grove cables.

PicoBricks Project Book

24

2.1.3. Project Image

2.1.4. Project Proposal

Can we light the LED with different time intervals? For example; flashing of the LED
several times per second, several times every half second.

2.1.5. Coding the Project with MicroBlocks

If you have done MicroBlocks-Picobricks connection and library installation, the steps
you need to follow for the first project are detailed in the table below.

1 Drag and drop the when started block to the
code writing area in the Control menu so that
the code you wrote when Picobricks starts to
run first.

2 Then, drag the forever block from the Control
menu and add it under the when started
block so that the codes you write will run
continuously as long as Picobricks is running.

3 Drag the PicoBricks set red LED block among
the code blocks in the Picobricks library and
drop it into the forever block for the red LED
to light up. Test if the red LED is lit by pressing
the start button.

PicoBricks Project Book

25

4 Now, to turn off the red LED, click once on the
checkbox in the Picobricks set red LED block
to set the checkbox to red, that is, off, and test
whether the LED goes out by pressing the
Start button again.

5 After flashing the red LED with the code
block, we will write the necessary codes for
the LED to flash itself at certain time intervals.
Drag the wait 500 millisecs block from
the Control category and add it below the
PicoBricks set red LED block.

6 Now add the Picobricks set red LED block
again under the wait 500 millisecs block and
turn the checkbox off. Then add the wait
500 millisecs block to the bottom again.
When you press the start button, you will see
that the red led on the Picobricks blinks at
500 millisecond intervals. The number 500
in the wait 500 millisecs block represents
milliseconds. You can change this number as
you wish. When it reaches 1000, the red LED
will flash in 1000 milliseconds, i.e. 1 second
intervals.

Click to access the project’s MicroBlocks codes.

2.1.6. MicroPython Codes of the Project

from machine import Pin #to access the hardware
on the pico
import utime #time library

led = Pin(7, Pin.OUT) #initialize digital pin 7 as an output for LED

while True: #while loop

 led.toggle() #LED on&off status
 utime.sleep(0.5) #wait for a half second

PicoBricks Project Book

26

2.1.7. Arduino C Codes of the Project

void setup() {
 // put your setup code here, to run once:
 pinMode(7, OUTPUT); // initialize digital pin 7 as an output
}

void loop() {
 // put your main code here, to run repeatedly:
 digitalWrite(7, HIGH); //turn the LED on by making the voltage HIGH
 delay(500); //wait for a half second
 digitalWrite(7, LOW); //turn the LED on by making the voltage LOW
 delay(500); //wait for a half second
}

GitHub Blink Project Page

http://rbt.ist/link

PicoBricks Project Book

27

2.2. Action - Reaction

As Newton explained in his laws of motion, a reaction occurs against every action.
Electronic systems receive commands from users and perform their tasks. Usually
a keypad, touch screen or a button is used for this job. Electronic devices respond
verbally, in writing or visually to inform the user that their task is over and what is
going on during the task. In addition to informing the user of these reactions, it can
help to understand where the fault may be in a possible malfunction. In this project,
you will learn how to receive and react to a command from the user in your projects
by coding the button-LED module of Picobricks..

2.2.1. Project Details and Algorithm

Different types of buttons are used in electronic systems. Locked buttons, push
buttons, switched buttons... There is 1 push button on Picobricks. They work like
a switch, they conduct current when pressed and do not conduct current when
released. In the project, we will understand the pressing status by checking whether
the button conducts current or not. If it is pressed, it will light the LED, if it is not
pressed, we will turn off the LED.

2.2.2. Wiring Diagram

You can code and run Picobricks’ modules without wiring. If you are going to use
the modules by separating them from the board, you should make the module
connections with grove cables.

PicoBricks Project Book

28

2.2.3. Project Image

2.2.4. Project Proposal

In this project, the LED turns on when the button is pressed, and the LED turns off
when the button is released. You can write the necessary codes for the LED to turn
on when the button is pressed once and to turn the LED off when it is pressed again.

2.2.5. Coding the Project with MicroBlocks

1 Let’s drag the when block in the
Control category because it is a
command that we need to run in case
of button press. This block constantly
checks the condition we have set,
and if the condition is true, it runs the
command below.

2 Place the PicoBricks button block in
the Picobricks category in the when
block, as our condition is that the
Picobricks button is pressed.

3 We want the red LED in Picobricks to
light up when the condition is met. So
place the PicoBricks set red LED block
in the Picobricks category below the
when block.

PicoBricks Project Book

29

4 We want the red LED to stay off when
the button is not pressed. So drag the
second when block from the Control
category. In the Condition field, place
the block in the operators category
to create the expression when the
button is not pressed.

5 Place the PicoBricks button block
from the Picobricks category in the
not block to create the expression
when the Picobricks button is not
pressed.

6 We want the red LED to remain off
whenever the button is not pressed.
So place the PicoBricks set red LED
block from the Picobricks category
under the when block and turn the
switch off.

7 When you press the Start button of
MicroBlocks, the codes will run in real
time. When you press the button on
Picobricks, the red LED will turn on,
and when you release it, it will turn off.

Click to access the project’s MicroBlocks codes.

2.2.6. MicroPython Codes of the Project

from machine import Pin #to acces the hardware picobricks
led = Pin(7, Pin.OUT) #initialize digital pin as an output for led
push_button = Pin(10, Pin.IN,Pin.PULL_DOWN) #initialize digital
pin 10 as an input

while True: #while loop

 logic_state = push_button.value() #button on&off status

PicoBricks Project Book

30

 if logic_state == True: #check the button and if it is on
 led.value(1) #turn on the led
 else:
 led.value(0) #turn off the led

2.2.7. Arduino C Codes of the Project

void setup() {
// put your setup code here, to run once:
 pinMode(7, OUTPUT); //initialize digital pin 7 as an output
 pinMode(10,INPUT); //initialize digital pin 10 as an input

}

void loop() {
 // put your main code here, to run repeatedly:
 if (digitalRead(10) == 1){ //check the button and if it is on

 digitalWrite(7, HIGH); //turn the LED on by making the voltage HIGH
 }
 else{
 digitalWrite(7, LOW); //turn the LED on by making the voltage LOW
 }
 delay(10); //wait for half second
}

GitHub Action - Reaction Project Page

http://rbt.ist/actionreaction

PicoBricks Project Book

31

2.3. Autonomous Lighting

It is called the state of being autonomous when electronic systems make a decision
based on the data they collect and perform the given task automatically. The
components that enable electronic systems to collect data from their environment
are called sensors. Many data such as the level of light in the environment, how
many degrees the air temperature is, how many lt/min water flow rate, how loud
the sound is, are collected by the sensors and transmitted to PicoBricks as electrical
signals, that is data. There are many sensors in Picobricks. Knowing how to get data
from sensors and how to interpret and use that data will improve project ideas like
reading a book improves vocabulary. In this project, with PicoBricks, we will enable
the LED to turn on when the amount of light decreases in order to understand the
working systems of the systems where the lighting is turned on automatically when
it gets dark.

2.3.1. Project Details and Algorithm

Sensors are electronic components that detect data in external environments and
send data to microcontrollers. The LDR sensor also detects the amount of light in
the environment and sends analog values. In our project, we will first check the
incoming data when the environment is light and dark by reading the LDR sensor
values, then we will set a limit according to these data, and if the amount of light is
below this limit, we will turn off the RGB LED of Picobricks, if not, we will turn off the
LED.

2.3.2. Wiring Diagram

You can code and run Picobricks’ modules without wiring. If you are going to use
the modules by separating them from the board, you should make the module
connections with grove cables.

PicoBricks Project Book

32

2.3.3. Project Image

2.3.4. Project Proposal

In this project, we turned on the LED on the LDR sensor data on Picobricks if the
environment was dark, and turned off the LED if it was bright. By processing the
LDR sensor data, you can code a nightlight or table lamp in your home to turn on
automatically in the dark. You can use the relay on Picobricks for this.

2.3.5. Coding the Project with MicroBlocks

1 Firstly, drag the when started block
from the Control menu and drop it
to the code writing area so that the
code you wrote when Picobricks
starts to run.

2 Then, drag the forever block from
the Control menu and add it under
the when started block so that the
code you wrote will run continuously
as long as Picobricks is running.

3 In order to provide autonomous
lighting, we first need to see the
values coming from the LDR sensor
when the environment is bright and
dark, and we need to act according
to these values. For this, drag and
drop the say123 block in the Output
category into the forever block.

PicoBricks Project Book

33

4 Then drag and drop the PicoBricks
light sensor block in the Picobricks
category to the circle that 123 in the
say block. See the values from the
sensor by pressing the start button.
The Light Sensor block gives the
ambient light level as a percentage
(%). You should see a value of 100 in
full light, 90 and below when you
close it with your hand, and values
close to 0 in complete darkness. You
can delete the codes after you see
the values.

5 Now, when the environment is dark,
drag the when block in the Control
category to the code writing area so
that the RGB LED lights up. Unlike
the when started block, this block
constantly checks the condition we
set, and if the condition is true, it
executes the command below. The
when started block runs the blocks
below it from the moment you press
the Start button.

6 Then, to define the condition in
the when block, drag and drop
the 3<4 block in the operators
category to the round part in the
when block. The 3<4 block performs
size-smallness control in condition
operations. You can place the blocks
you want to control in the fields
written 3 and 4 in the block. In
programming, different operators
such as equal, not equal, greater
than, less than are often used. In this
project, we will check whether the
value from the sensor is less than 90.

7 Now drag the PicoBricks light sensor
block from the Picobricks category
and drop it into the circle that says
3 in the 3<4 operator in the when
block.

PicoBricks Project Book

34

8 To complete the condition in the
when block, delete the number 4
and type 90 from the keyboard. In
this way, the program will check
whether the Picobricks sensor
values are less than 90% and run the
codes under the when block when it
is less than 90%.

9 Drag and drop the PicoBricks set
RGB LED block in the Picobricks
category under the when block so
that the LED can light up when the
environment is dark, that is, when
the LDR sensor value is less than 90.
You can choose the color you want
from the color palette that opens by
clicking the green circle.

10 Until this stage, we wrote the
necessary codes for the LED to
light up when the environment
is dark. Now, we need to add the
operations to the program when
the environment is bright, that is,
when the condition is not met. For
this, take the when block from the
Control category and leave it to the
code writing area.

11 In the when block, place the
operators category block
in the condition field. In this way, we
can create the condition if the LDR
sensor value is not less than 90.

12 Again, drag the 3<4 operator from
the operators category to the not
block.

13 Drag the Picobricks light sensor
block from the Picobricks category
and place it in the circle that says 3
in the 3<4 operator and delete the
number 4 and write 90.

PicoBricks Project Book

35

14 Drag and place the PicoBricks turn
off RGB LED block in the Picobricks
category under the when block so
that the RGB LED turns off when the
LDR sensor value is not less than 90.

15 Test your codes by pressing the
start button. If everything went well,
when you close the Picobricks LDR
sensor with your hand, the RGB
LED will light up in the color you
specified, and when you raise your
hand, it will turn off.

Click to access the project’s MicroBlocks codes.

2.3.6. MicroPhyton Codes of the Project

import time
from machine import Pin, ADC
from picobricks import WS2812
#define the library

ldr = ADC(Pin(27))
ws = WS2812(6, brightness=0.4)
#define the input and output pins

#define colors
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

COLORS = (RED, GREEN, BLUE)
#RGB color Code

while True:#while loop
 print(ldr.read_u16()) #print the value of the LDR sensor to the screen.

 if(ldr.read_u16()>10000):#let’s check the ldr sensor
 for color in COLORS:

PicoBricks Project Book

36

 #turn on the LDR
 ws.pixels_fill(color)
 ws.pixels_show()

 else:
 ws.pixels_fill((0,0,0)) #turn off the RGB

 ws.pixels_show()

2.3.7. Arduino C Codes of the Project

#include <Adafruit_NeoPixel.h>
#define PIN 6
#define NUMLEDS 1
#define LIGHT_SENSOR_PIN 27
Adafruit_NeoPixel leds = Adafruit_NeoPixel(NUMLEDS, PIN, NEO_GRB + NEO_
KHZ800);
//define the libraries
int delayval = 250; // delay for half a second

void setup()
{
 leds.begin();
}

void loop() {
int analogValue = analogRead(LIGHT_SENSOR_PIN);
for(int i=0;i < NUMLEDS;i++)
{
 if (analogValue > 200) {
 // pixels.Color takes RGB values, from 0,0,0 up to 255,255,255
 leds.setPixelColor(i, leds.Color(255,255,255));
 leds.show(); // This sends the updated pixel color to the hardware.
 delay(delayval);
 }
 else {
 leds.setPixelColor(i, leds.Color(0,0,0)); // white color code
 leds.show(); // This sends the updated pixel color to the hardware.

 }
 }
 delay(10);

PicoBricks Project Book

37

}

GitHub Autonomous Lighting Project Page

http://rbt.ist/autonomouslighting

PicoBricks Project Book

38

2.4. Thermometer

Sensors are the sense organs of electronic systems. We use our skin to feel, our eyes
to see, our ears to hear, our tongue to taste, and our nose to smell. There are already
many sense organs (sensors) in the picobrix. Also, new ones can be added. You can
interact with the environment using humidity, temperature, light and many more
sensors. Picobricks can measure the ambient temperature without the need for any
other environmental component.

Ambient temperature is used in greenhouses, incubators, in environments used for
the transport of drugs, briefly in situations where the temperature change must be
constantly monitored. If you are going to do an operation on temperature change
in your projects, you should know how to measure the ambient temperature. In this
project, you will prepare a thermometer with Picobricks that will display the ambient
temperature on the OLED screen.

2.4.1. Project Details and Algorithm

Picobricks has a DHT11 module. This module can sense the temperature and
humidity in the environment and send data to the microcontroller. In this project,
we will write the necessary codes to print the temperature values measured by the
DHT11 temperature and humidity sensor on the OLED screen.

2.4.2. Wiring Diagram

PicoBricks Project Book

39

2.4.3. Construction Stages of the Project

2.4.4. Project Proposal

In order to develop your project, you can make the red LED light up and a warning
phrase appear on the screen when the temperature in the environment rises above
30 degrees.

2.4.5. Coding the Project with Microblocks

1 First, you need to import the OLED
library into the Microblocks editor.
You have to click the Add Library
button for this.

2 In the File Open window that opens,
click Library and then Graphics.

PicoBricks Project Book

40

3 Click the OLED Graphics.ubl library
from the graphics libraries and click
the open button in the lower right
position of the window. You will see
the OLED library added to the list of
code categories.

4 After adding the OLED library,
drag the when started block in the
Control menu and drop it to the
code writing area so that the codes
you wrote when Picobricks starts to
run.

5 Then you need to add the
identification block of the OLED
display. For this, drag the initialize
i2c OLED block in the OLED
category and add it under the when
started block.

6 Then drag the forever block from
the Control menu to the bottom
of the OLED definition block so
that the codes you write will run
continuously as long as Picobricks is
running.

7 To print text on the OLED screen,
drag and drop the write Hello! at
x0 y0 inverse block in the OLED
category into the forever block.
When you press the start button,
Hello! You will see what you wrote.
Hello here! You can delete the text
and write the text you want so that
it is displayed on the screen.

8 Now in the write block delete the
text Hello! and write Temperature:
and change the x position to 15 and
the y position to 10.

PicoBricks Project Book

41

9 Again take the write block from the
OLED Graphics category and drag
and drop it into the forever block
and set the x position to 55 and the
y position to 30. To print numeric
values on the OLED screen, you
must first convert these numeric
values to textual expressions. To do
this, drag and drop the block from
the Data category, Hello! in the
write block Drop it in the round area
that says. Then drag the PicoBricks
temperature (C) block from the
Picobricks category and place it in
the micro circle in the join block
and delete the blocks text.

10 Finally, drag and drop the write
block from the OLED Graphics
category into the forever block.
Hello! Delete the text, write degrees
and change the x position to 40
and the y position to 50. By pressing
the start button, you can view the
ambient temperature measured by
Picbobricks’ internal temperature
sensor on the OLED screen.

Click to access the project’s Microblocks codes.

2.4.6. Micropython Codes of the Project

from machine import Pin,I2C,ADC #to acces the hardware picobricks
from picobricks import SSD1306_I2C, DHT11 #oled library
import utime #time library
#to acces the hardware picobricks
WIDTH=128
HEIGHT=64
#define the weight and height picobricks

sda=machine.Pin(4)
scl=machine.Pin(5)
#we define sda and scl pins for inter-path communication

PicoBricks Project Book

42

i2c=machine.I2C(0, sda=sda, scl=scl, freq=2000000)#determine the frequency values
oled=SSD1306_I2C(WIDTH, HEIGHT, i2c)
pico_temp=DHT11(Pin(11))
current_time=utime.time()
while True:
 if(utime.time() - current_time > 2):
 current_time = utime.time()
 pico_temp.measure()
 oled.fill(0)#clear OLED
 oled.show()
 temperature=pico_temp.temperature
 humidity=pico_temp.humidity
 oled.text(“Temperature: “,15,10)#print “Temperature: “ on the OLED at x=15 y=10
 oled.text(str(int(temperature)),55,25)
 oled.text(“Humidty: “, 30,40)
 oled.text(str(int(humidity)),55,55)
 oled.show()#show on OLED
 utime.sleep(0.5)#wait for a half second

2.4.7. Arduino C Codes of the Project

#include <Wire.h>
#include <DHT.h>
#include “ACROBOTIC_SSD1306.h”

#define DHTPIN 11
#define DHTTYPE DHT11
//define the library

DHT dht(DHTPIN, DHTTYPE);
float temperature;
//define the temperature veriable

void setup() {
 //define dht sensor and Oled screen
 Serial.begin(115200);
 dht.begin();
 Wire.begin();
 oled.init();

PicoBricks Project Book

43

 oled.clearDisplay();
}

void loop() {
 temperature = dht.readTemperature();
 Serial.print(“Temp: “);
 Serial.println(temperature);
 oled.setTextXY(3,1);
 oled.putString(“Temperature: “);
 //print “Temperature: “ on the OLED at x=3 y=1
 oled.setTextXY(4,3);
 oled.putString(String(temperature));
 //print the value from the temperature sensor to the oled screen at x=4 y=3
 Serial.println(temperature);
 delay(100);
}

GitHub Thermometer Project Page

http://rbt.ist/thermometer

PicoBricks Project Book

44

2.5. Graphic Monitor

When we look at the electronic items around us, you realize that they have many
replaceable features and they are designed by engineers to be most useful to the
user. Such as lighting systems, cooking systems, sound systems, cleaning systems.
The way it works, the amount, the method, etc., by many system users. features can
be programmed to change.

In robotic projects, in the processes of changing the sound level, changing the motor
speed, changing the brightness of the light, the electrical voltage is sent in a way
that creates a lower or higher effect. By decreasing the frequency of the electrical
signal to the component, it can be operated at a lower level, and by increasing the
frequency of the outgoing electrical signals, it can be operated at a higher level.

In systems without a screen, real-time graphic monitors are used to monitor some
sensors and variables involved in the operation of the system. Graphic monitors
make it very easy to detect the fault.

2.5.1. Project Details and Algorithm

In this project, we will prepare a project in which we increase or decrease the
brightness of the red LED with a potentiometer. In addition, we will simultaneously
monitor the electrical change occurring during this process on the Microblocks
graphic monitor. When the picobricks starts, the potentiometer value will be read
continuously and the brightness value of the LED will be adjusted. Applications in
which the effect of the electrical signal is reduced by changing the frequency is
called PWM. We will send the analog values we read from the potentiometer as
PWM signals to the red LED and we will be able to adjust the illumination intensity.

2.5.2. Wiring Diagram

PicoBricks Project Book

45

2.5.3. Project Image

2.5.4. Project Proposal

As you turn the potentiometer, you can prepare a project that changes the volume
of the sound coming out of the buzzer and displays the flowing data on the graphic
monitor.

2.5.5. Coding the Project with Microblocks

1 To prepare the codes that will run
as long as Picobricks is on, first drag
the when block from the control
category.

2 To adjust the brightness of the LED,
we can send it a 3.3V voltage by
dividing it into 1024 parts. To do this,
drag the set pin 1 to 1023 block from
the pins category to the bottom of
the when block. Instead of 1, you
should write the GPIO number to
which the red LED is connected on
the Picobricks.

3 Click the icon to add the pin
number of the red LED in Picobricks.
Select “show advanced blocks” from
the drop-down menu.

PicoBricks Project Book

46

4 You will see ready variables in the
Variables category. You can find
the pin numbers of all Picobricks
modules with the prefix ”_pb_pin_”.
Drag and drop the _pb_pin_RedLED
block to the field labeled 1 to
represent the pin that the red LED is
connected to.

5 The area that says 1023 is the area
where we set the level of current to
be sent to the Red LED. Place the
PicoBricks potentiometer block
from the Picobricks category here,
as we will get this value in the
potentiometer.

6 Drag the graph 100 block from the
output category to see the numerical
data sent by the potentiometer on
the graph.

7 When we place the PicoBricks
potentiometer block on the graph
block, we write the necessary code
for the values to appear on the
graphic monitor and complete the
project. You can watch the value
of the Potentiometer change by
running your code and clicking the
graphic icon.

Click to access the project’s Microblocks codes.

2.5.6. Micropython Codes of the Project

from machine import Pin,ADC,PWM
from utime import sleep
#define libraries
led=PWM(Pin(7))
pot=ADC(Pin(26,Pin.IN))

PicoBricks Project Book

47

#define the value we get from the led and pot
led.freq(1000)

while True: #while loop
 led.duty_u16(int((pot.read_u16()))

 print(str(int((pot.read_u16()))) #Turn on the LED according to the value from the
potentiometer
 sleep(0.1) #delay

2.5.7. Arduino C Codes of the Project

void setup() {
 // put your setup code here, to run once:
 pinMode (7,OUTPUT); //initialize digital pin 7 as an output
 pinMode (26,INPUT); //initialize digital pin 26 as an input Serial.begin(9600); //start
serial communication

}

void loop() {
 // put your main code here, to run repeatedly:
 int pot_val = analogRead(26);
 int led_val = map(pot_val, 0, 1023, 0, 255);
 digitalWrite(7, led_val);
 Serial.println(led_val);
 //turn on the LED according to the value from the potentiometer

 delay(100); //wait

}

PicoBricks Project Book

48

GitHub Graphic Monitor Project Page

http://rbt.ist/monitor

PicoBricks Project Book

49

2.6. Dominate the Rhythm

Many events in our lives have been digitized. One of them is sounds. The tone
and intensity of the sound can be processed electrically. So we can extract notes
electronically. The smallest unit of sounds that make up music is called a note. Each
note has a frequency and intensity. With the codes we will write, we can adjust
which note should be played and how long it should last by applying frequency and
intensity.

In this project, we will prepare a music system that will play the melody of a song
using the buzzer module and adjust the rhythm with the potentiometer module
with Picobricks. You will also learn the use of variables, which has an important place
in programming terminology, in this project.

2.6.1. Project Details and Algorithm

With Picobricks you can play any song whose sheet we know. We will use the
button-LED module to start the song, the potentiometer module to adjust the speed
of the song, and the buzzer module to play the notes.

Potentiometer is analog input module. It is variable resistance. As the amount of
current flowing through it is turned, it increases and decreases like opening and
closing a faucet. We will adjust the speed of the song by controlling this amount of
current with codes. Buzzers change the sound levels according to the intensity of the
current passing over them, and the sound tones according to the voltage frequency.
With Microblock’s, we can easily code the notes we want from the buzzer module by
adjusting their tones and durations.

We will check the button press status in the project. We will make the melody start
playing when the button is pressed. During the playing of the melody, we will use
a variable called rthm to increase or decrease the playing times of the notes at the
same rate. After Picobricks starts, we will enable the user to adjust the rthm variable
with the potentiometer, either while playing the melody or before playing it. As long
as Picobricks is on, we will divide the potentiometer value (0-1023) by 128 and assign
it to the rthm variable. Variables are data structures that we use when we want to
use values that can be changed by the user or sensors in our codes. When the user
presses the button to start the song, we will prepare the note codes that will allow
the notes to play for the duration calculated according to the rthm variable.

PicoBricks Project Book

50

2.6.2. Wiring Diagram

2.6.3. Project Image

2.6.4. Project Proposal

To make your project more visual, you can light a different color LED according to
the played note, show the note names and playing speed on the OLED screen.

2.6.5. Coding the Project with Microblocks

Drag the “When started” from the Control category and the “forever” block under
it to make Picobricks run the code continuously as soon as it starts. Add the OLED
display library and place the code that initializes the display before the forever
block so that you can display the user’s speed setting on the screen. Click the Add a
variable button in the Variables category. When you type and confirm rithm in the
dialog that opens, the rithm variable is created.

PicoBricks Project Book

51

Select the variable name as rthm by clicking the black triangle inside the set
OledReady to 0 block in the Variables category. Then put it inside the forever block.
We will divide the value to be read from the potentiometer by 128 and use it to
calculate the duration of the note. Place the 10/2 block from the Operators category
in the variable block and set the denominator to 128. To read the potentiometer, drag
the PicoBricks potentiometer block from the PicoBricks category to the 10 field in
the division block. Take the write block in the OLED category. In the Hello field, place
the Join block from the Data category and place the rithm variable.

Drag the when block from the Control category for continuous monitoring of the
button press status on the Picobricks. Place the Picobricks button block inside.

Add tone library to workspace.

PicoBricks Project Book

52

Add block below the when block. C note name, 0
lets you set the note tone, and 500 lets you set the playing time. We will determine
the playing times of the notes by dividing them by the rithm variable. Drag the 10/2
block from the operators category to the 500 field of the play note block.

The rithm variable takes the lowest value of 0. we will add one to the rthm value
since 0 a quotient of a number will be infinite. Drag the “10+2” sum block from the
operators category to the denominator(2) field in the division operation. Put the
rithm variable in field 10 and change the number 2 to 1. Duplicate the blocks as many
as the number of notes in the song with duplicate and duplicate all options by right
clicking on the play note block.

PicoBricks Project Book

53

Write the names of the notes in order. Write down the default beat times for each
note in field 10 of the division operator. A value of 1000 represents a full stroke, 500
represents a half stroke, and 250 represents a quarter stroke. By adding the write
block from the OLED category right after the when block, we show the user Now
Playing. When the melody is finished, we will clear the screen.

PicoBricks Project Book

54

These notes are the chorus part of the melody. So we have to code it to repeat twice
and then clear the screen. Just take the repeat 10 block from the control category
and place it inside. Set the number of repetitions to 2. After the loop, add the clear
code from the OLED category.

PicoBricks Project Book

55

When you run the codes, set the melody speed with the potentiometer on the
Picobricks. Control the pace of the melody by turning the potentiometer while or
before playing your melody.

Click to access the project’s MicroBlocks codes.

2.6.6. Micropython Codes of the Project

from machine import Pin,PWM,ADC,I2C #to acces the hardware picobricks
from utime import sleep #time library
from picobricks import SSD1306_I2C
import utime

WIDTH=128
HEIGHT=64
#define the weight and height picobricks

sda=machine.Pin(4)
scl=machine.Pin(5)
#we define sda and scl pins for inter-path communication
i2c=machine.I2C(0, sda=sda, scl=scl, freq=2000000)#determine the frequency values
oled=SSD1306_I2C(WIDTH, HEIGHT, i2c)

button= Pin(10,Pin.IN,Pin.PULL_DOWN)
pot=ADC(Pin(26))
buzzer= PWM(Pin(20))
#determine our input and output pins

PicoBricks Project Book

56

pressed = False
rithm = 0

tones = {
“A3”: 220,
“D4”: 294,
“E4”: 330,
“F4”: 349
}
#define the tones

mysong = [“A3”,”E4”,”E4”,”E4”,”E4”,”E4”,”E4”,”F4”,”E4”,”D4”,”F4”,”E4”]#let’s define the
tones required for our song in the correct order into a sequence
noteTime = [1,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,1]#define wait times between tones
into an array

def playtone(frequency):
 buzzer.duty_u16(6000)
 buzzer.freq(frequency)
#define the frequencies of the buzzer
def playsong(pin):
 global pressed
 pressed = True
#play the tones with the right cooldowns
#An finally we need to tell the pins when to trigger, and the function to call when
they detect an event:
button.irq(trigger=Pin.IRQ_RISING, handler=playsong)
note_count = 9999
played_time = 0
while True:
 current_time = utime.ticks_ms()
 oled.show()
 oled.text(“Press the button”,0,0)

 if (note_count < len(mysong)):
 oled.fill(0)
 oled.text(“Dominate “,30,10)
 oled.text(“the “,45,25)
 oled.text(“Rhythm “,35,40)
 rithm=((pot.read_u16()/65535.0)*20) +1
 if (current_time - played_time)/1000.0 >= noteTime[note_count]/rithm:

PicoBricks Project Book

57

 played_time = utime.ticks_ms()
 playtone(tones[mysong[note_count]])
 note_count += 1
 else:
 buzzer.duty_u16(0)

 if pressed:

 note_count = 0
 pressed = False

2.6.7. Arduino C Codes of the Project

#include <Wire.h>
#include “ACROBOTIC_SSD1306.h”

int buzzer = 20;
int pot =26;
int button= 10;
//define the buzzer, pot and button

int Re = 294;
int Mi = 330;
int Fa = 349;
int La = 440;
//define the tones

void setup()
{
 Wire.begin();
 oled.init();
 oled.clearDisplay();

 pinMode(buzzer,OUTPUT);
 pinMode(26,INPUT);
 pinMode(button,INPUT);
//determine our input and output pins

PicoBricks Project Book

58

}

void loop()
{
 int rithm = (analogRead(pot))/146;
 String char_rithm = String(rithm);
 oled.setTextXY(3,4);
 oled.putString(“Speed: “);
 oled.setTextXY(3,10);
 oled.putString(char_rithm);

 //print “Speed: “ and speed value on the OLED at x=3 y=4

 delay(10);

 if (digitalRead(button) == 1){

 oled.clearDisplay();
 oled.setTextXY(3,2);
 oled.putString(“Now playing...”);
 //print “Speed: “ and speed value on the OLED at x=3 y=4
 tone(buzzer, La); delay (1000/(rithm+1));
 tone(buzzer, Mi); delay (500/(rithm+1));
 tone(buzzer, Mi); delay (500/(rithm+1));
 tone(buzzer, Mi); delay (500/(rithm+1));
 tone(buzzer, Mi); delay (500/(rithm+1));
 tone(buzzer, Mi); delay (500/(rithm+1));
 tone(buzzer, Mi); delay (500/(rithm+1));
 tone(buzzer, Fa); delay (500/(rithm+1));
 tone(buzzer, Mi); delay (500/(rithm+1));
 tone(buzzer, Re); delay (500/(rithm+1));
 tone(buzzer, Fa); delay (500/(rithm+1));
 tone(buzzer, Mi); delay (1000/(rithm+1));
//play the notes in the correct order and time when the button is pressed

 oled.clearDisplay(); //clear the screen
 }
 noTone(buzzer); //stop the buzzer

PicoBricks Project Book

59

GitHub Dominate the Rhythm Project Page

http://rbt.ist/rhythm

PicoBricks Project Book

60

2.7 Show Your Reaction

Now we will prepare a game that develops attention and reflexes. Moving quickly
and being able to provide attention for a long time are important developmental
characteristics of children. Preschool and primary school children do activities
that increase their attention span and reflexes, as they are liked by their parents
and teachers. The electronic system we will prepare will be a game that increases
attention and develops reflexes. After finishing the project, you can compete with
your friends. :)

In this project you will learn about the randomness used in every programming
language. With Picobricks, we will develop an electronic system using OLED display,
Button-LED and Buzzer module.

2.7.1. Project Details and Algorithm

A timer starts running as soon as the Picobricks are turned on. With this timer,
we can measure 1 thousandth of a second. One thousandth of a second is called a
millisecond. Timers are used in many electronic systems in daily life. Timed lighting,
ovens, irons, food processors…

When our project starts working, we will display a welcome message on the OLED
screen. Then we will print on the screen what the user has to do to start the game.
In order to start the game, we will ask the player to prepare by counting backwards
from 3 on the screen after the button is pressed. After the end of the countdown, the
red LED will turn on in a random time between 2-10 seconds. We will reset the timer
immediately after the red LED lights up. We will measure the timer as soon as the
button is pressed again. This value we get will be in milliseconds. We will display this
value on the screen as the player’s reaction time.

2.7.2. Wiring Diagram

PicoBricks Project Book

61

2.7.3. Project Image

2.7.4. Project Proposal

Picobricks needs to be reset to be able to restart the game. You can develop your
project by asking the button to be pressed again to start the game again. You can
also have the highest score and the last scorer printed on the screen at the end of
the game.

2.7.5. Coding the Project with Microblocks

As soon as Picobricks starts after adding the OLED Display library, let’s give place to
the instruction statements on the screen.

When the user presses the button of Picobricks, we take the for i in 10 loop from the
Control category and set the number 10 to 3 so that it counts down as 3,2,1. This loop
will increase the variable i from 1 to 3 every turn and run the code 3 times. To clear
the screen and print 3…,2…,1… every second, you must place the OLED screen blocks
and the wait block inside the for block as in the image.

PicoBricks Project Book

62

From the Data category, place the A block in the hello field in the
write block, delete the micro text, and place the subtraction operator in the blocks
field. Do 4 - as subtraction.

 Just below the for loop, we add the block that clears the screen and announces the
start of the game. To set the random wait, place the random 1 to 10 block in the wait
block. Write 1000 in the first field and 5000 in the second field. This command will
generate a random time in the range of 1 second to 5 seconds. Add the code that will
turn on the red LED right after. We reset the timer with the reset timer block from
the Input category. By adding the PicoBricks button block to the wait until block in
the Control category, we make it wait until the button is pressed.

Create a score variable to measure the timer value when the button is pressed. Place
the timer value block in the score variable under the wait until block. Then turn off
the red LED and make a 200 ms beep. Finally, clean the screen. We express pressing
the reset button on the Picoboard to restart the game and print the reaction time on
the screen. Enjoyable games.

PicoBricks Project Book

63

Click to access the project’s Microblocks codes.

2.7.6. Micropython Codes of the Project

from machine import Pin, I2C,Timer
from picobricks import SSD1306_I2C
import utime
import urandom
#define the library
WIDTH=128
HEIGHT=64
#define the width and height values
sda=machine.Pin(4)
scl=machine.Pin(5)
i2c=machine.I2C(0,sda=sda, scl=scl, freq=2000000)
oled= SSD1306_I2C(WIDTH, HEIGHT, i2c)

PicoBricks Project Book

64

button = Pin(10,Pin.IN,Pin.PULL_DOWN)
led=Pin(7,Pin.OUT)
#define our input and output pins
while True:
 led.value(0)
 oled.fill(0)
 oled.text(“press the button”,0,10)
 oled.text(“TO START!”,25,25)
 oled.show()
 #print “Press the button” and “TO START!” on the OLED screen
 while button.value()==0:
 pass
 oled.fill(0)
 oled.text(“Wait For LED”,15,30)
 oled.show()
 #write “wait for LED” on the screen when the button is pressed
 utime.sleep(urandom.uniform(1,5))
 led.value(1)
 timer_start=utime.ticks_ms()
 #wait for a rondom second and turn on the led
 while button.value()==0:
 pass
 timer_reaction=utime.ticks_diff(utime.ticks_ms(), timer_start)
 pressed=True
 oled.fill(0)
 oled.text(“Your Time”,25,25)
 oled.text(str(timer_reaction),50,50)
 oled.show()
 led.value(0)
 utime.sleep(1.5)
 #print the score and “Your Time” to the screen when the button is pressed.

2.7.7. Arduino C Codes of the Project

#include <Wire.h>
#include “ACROBOTIC_SSD1306.h”
//define the library

int buzzer = 20;
int button = 10;

PicoBricks Project Book

65

int led = 7;
int La = 440;

int old_time = 0;
int now_time = 0;
int score = 0;
String string_score;
//define our integer and string variables

void setup(){
// put your setup code here, to run once:
 Wire.begin();
 oled.init();
 oled.clearDisplay();

 pinMode(led,OUTPUT);
 pinMode(buzzer,OUTPUT);
 pinMode(button,INPUT);
Serial.begin(9600);
//define the input and output pins
}

void loop(){
// put your main code here, to run repeatedly:
 oled.setTextXY(3,0);
 oled.putString(“Press the button”);
 oled.setTextXY(5,4);
 oled.putString(“TO START”);

 if (digitalRead(button) == 1){

 for (int i=3;i>0;i--){

 String string_i = String(i);
 oled.clearDisplay();
 oled.setTextXY(4,8);
 oled.putString(string_i);
 delay(1000);

 }
 //count backwards from three

PicoBricks Project Book

66

 oled.clearDisplay();
 oled.setTextXY(4,6);
 oled.putString(“GO!!!”);
 //print “GO!!” on the OLED at x=4 y=6

 int random_wait = random(1000, 5000);
 delay(random_wait);
 //wait for a random second between 1 and 5

 digitalWrite(led, HIGH);
 old_time=millis();
 //turn on LED

 while(!(digitalRead(button) == 1)){

 now_time=millis();

 score = now_time-old_time;
 string_score = String(score);
 //save score as string on button press
 }
 digitalWrite(led, HIGH);
 tone(buzzer, La);
 delay (200);
 noTone(buzzer);
 //turn on LED and buzzer

 oled.clearDisplay();
 oled.setTextXY(1,4);
 oled.putString(“Press the”);
 //print “Press the” on the OLED at x=1 Y=4
 oled.setTextXY(2,3);
 oled.putString(“RESET BUTON”);
 //print “RESET BUTTON” on the OLED at X=2 Y=3
 oled.setTextXY(3,3);
 oled.putString(“to Repeat!”);
 //print “To Repeat!” on the OLED at X=3 Y=3
 oled.setTextXY(6,3);
 oled.putString(“Score: “);
 oled.setTextXY(6,9);

PicoBricks Project Book

67

 oled.putString(string_score);
 oled.setTextXY(6,13);
 oled.putString(“ ms”);
 Serial.println(score);
 //print score value to screen

 delay(10000);
 oled.clearDisplay();
 //wait ten seconds and clear the screen
 }
}

GitHub Show Your Reaction Project Page

http://rbt.ist/reaction

PicoBricks Project Book

68

2.8. My Timer

Measuring time is a simple but important task that we do in our daily lives without
realizing it. A surgeon in surgery, a business person trying to catch up with a
meeting, an athlete trying to win, a student trying to finish an exam or a chess
match… Smart wrist watches, phones and even professional chronometers are used
to measure time. Time is a variable that should be used very accurately in electronic
systems. For example, a washing machine; how long the drum will rotate clockwise,
how much counterclockwise, how many seconds water must flow in order to dissolve
the detergent are tasks done by measuring time. To develop projects where time is
of the essence, you need to know how to use it.

In this project, you will make your own time measuring device using Picobircks,
OLED display, button and potentiometer modules. A Timer…

2.8.1. Project Details and Algorithm

When Picobricks starts, let’s put a statement on the screen that introduces the
project and contains instructions. As the user turns the potentiometer, it will set a
time in the range of 0-60 minutes. When the user presses the button of Picobricks
after deciding the time with the potentiometer, it will start counting down in
minutes and seconds on the screen. If the button is pressed while the time is
running backwards, the Timer will stop and show the remaining time on the screen.
If the minute, second and second value reaches zero without pressing the button, a
notification stating that the time has expired will be displayed on the screen and the
program will be stopped.

2.8.2. Wiring Diagram

PicoBricks Project Book

69

2.8.3. Construction Stages of the Project

2.8.4. Project Proposal

You can add a beep to the start of the Timer. When the time is reset, you can give
different and high tone warnings with the buzzer and announce that the time is up
from afar.

2.8.5. Coding the Project with MicroBlocks

First, create the variables to be used in the project. setTimer, min, sec, msec set the
values of the sec and msec variables to 59 and 9 respectively. Then insert the codes
of the splash screen.

PicoBricks Project Book

70

Let’s assign the adjusted minute value to the setTimer variable by multiplying the
value read from the potentiometer by 60 and dividing by 1023 until the button is
pressed, and print this variable on the screen.

Pressing the button after the repeat until block clears the screen and waits for a
short while, then GO! Let’s broadcast.

GO! Let’s place the expression that states that the countdown has started when the
broadcast is received. Then let’s reset the timer.

Let’s set the msec, sec and min values by measuring the timer until the button is
pressed a second time. msec represents milliseconds (0-9), sec seconds (0-59), min
(0-59) minutes. Then let’s show the variables on the OLED screen.

If the timer is to be terminated before the time is up, let’s make the remaining time
appear on the screen when the button is pressed.

PicoBricks Project Book

71

Finally, let’s constantly check if the sec, min and msec variables are 0. When all
three of these variables are zero, it means the time is up. So, let’s stop all the codes
from running after we stop the other code blocks from running and print the end
message on the screen.

The final code should be as follows. Once you click the start button, your project will
run.

Click to access the project’s Microblocks codes.

2.8.6. MicroPython Codes of the Project
from machine import Pin, I2C, ADC, Timer #to acces the hardware picobricks
from picobricks import SSD1306_I2C #oled library
import utime #time library

WIDTH = 128

PicoBricks Project Book

72

HEIGHT = 64
#define the width and height values

sda=machine.Pin(4)
scl=machine.Pin(5)
#we define sda and scl pins for inter-path communication
i2c=machine.I2C(0,sda=sda, scl=scl, freq=1000000)#determine the frequency values

oled = SSD1306_I2C(128, 64, i2c)
pot = ADC(Pin(26))
button = Pin(10,Pin.IN,Pin.PULL_DOWN)
#determine our input and output pins

oled.fill(0)
oled.show()
#Show on OLED

time=Timer()
time2=Timer()
time3=Timer()
#define timers

def minute(timer):
 global setTimer
 setTimer -=1

def second(timer):
 global sec
 sec-=1
 if sec==-1:
 sec=59

def msecond(timer):
 global msec
 msec-=1
 if msec==-1:
 msec=99
#We determine the increments of the minute-second and millisecond values.
sec=59
msec=99

PicoBricks Project Book

73

global setTimer

while button.value()==0:
 setTimer=int((pot.read_u16()*60)/65536)+1
 oled.text(“Set timer:” + str(setTimer) + “ min”,0,12)
 oled.show()
 utime.sleep(0.1)
 oled.fill(0)
 oled.show()
#If the button is not pressed, the value determined by the potentiometer is printed
on the OLED screen.

setTimer-=1

time.init(mode=Timer.PERIODIC,period=60000, callback=minute)
time2.init(mode=Timer.PERIODIC,period=1000, callback=second)
time3.init(mode=Timer.PERIODIC,period=10, callback=msecond)
#We determine the periods of minutes, seconds and milliseconds.
utime.sleep(0.2)#wait for 0.2 second

while button.value()==0:
 oled.text(“min:” + str(setTimer),50,10)
 oled.text(“sec:” + str(sec),50,20)
 oled.text(“ms:” + str(msec),50,30)
 oled.show()
 utime.sleep(0.008)
 oled.fill(0)
 oled.show()
 if(setTimer==0 and sec==0 and msec==99):
 utime.sleep(0.1)
 msec=0
 break;
#When the button is pressed, it prints the min-sec-ms values to the OLED screen in
the determined x and y coordinates.

oled.text(str(setTimer),60,10)
oled.text(str(sec),60,20)
oled.text(str(msec),60,30)
oled.text(“Time is Over!”,10,48)
oled.show()

PicoBricks Project Book

74

#Print the minutes, seconds, milliseconds and “Time is Over” values to the X and Y
coordinates determi

2.8.7. Arduino C Codes of the Project

#include <Wire.h>
#include “ACROBOTIC_SSD1306.h”
//define the library
int minute;
int second = 59;
int milisecond = 9;
int setTimer;
//define variables
void setup() {
// put your setup code here, to run once:
 pinMode(10,INPUT);
 pinMode(26,INPUT);

 Wire.begin();
 oled.init();
 oled.clearDisplay();
//define the input-output pins and the oled Display

}

void loop() {
// put your main code here, to run repeatedly:
 oled.setTextXY(1,2);
 oled.putString(“<<My Timer>>”);
 oled.setTextXY(3,1);
 oled.putString(“Please use the”);
 oled.setTextXY(4,1);
 oled.putString(“Potantiometer”);
 oled.setTextXY(5,0);
 oled.putString(“to set the Timer”);

//print the “<<My Timer>>”, “Please use the”, “Potentiometer” and “to set the Timer.”
to the x and y coordinates determinates on the OLED screen.

PicoBricks Project Book

75

 delay(3000);
 oled.clearDisplay();
//we waited three seconds and cleared

 while(!(digitalRead(10) == 1))
 {
 setTimer = (analogRead(26)*60)/1023;
 oled.setTextXY(3,1);
 oled.putString(“set to:”);
 oled.setTextXY(3,8);
 oled.putString(String(setTimer));
 oled.setTextXY(3,11);
 oled.putString(“min.”);
//determine the min valuewith the potentiometer and print it on the screen until the
button is pressed.
 }
 oled.clearDisplay();
 oled.setTextXY(1,1);
 oled.putString(“The Countdown”);
 oled.setTextXY(2,3);
 oled.putString(“has begin!”);
 //print the “The Countdown” and “has begin!” to the x and y coordinates
determineted on the OLED screen
 while(!(digitalRead(10) == 1))
 {
 milisecond = 9- (millis()%100)/10;
 second = 59-(millis()%60000)/1000;
 minute = (setTimer-1)-((millis()%360000)/60000);

 oled.setTextXY(5,3);
 oled.putString(String(minute));
 oled.setTextXY(5,8);
 oled.putString(String(second));
 oled.setTextXY(5,13);
 oled.putString(String(milisecond));
 oled.setTextXY(5,6);
 oled.putString(“:”);
 oled.setTextXY(5,11);
 oled.putString(“:”);
//when the button is pressed, decrease the millisecond, second and minute values

PicoBricks Project Book

76

and write to the screen.
 }
 oled.setTextXY(5,3);
 oled.putString(String(minute));
 oled.setTextXY(5,8);
 oled.putString(String(second));
 oled.setTextXY(5,13);
 oled.putString(String(milisecond));
 oled.setTextXY(5,6);
 oled.putString(“:”);
 oled.setTextXY(5,11);
 oled.putString(“:”);
 delay(10000);
//print the minute, second and millisecond values to the x and y coordinates
determined on the OLED screen
 if (minute==0 & second==0 & milisecond==0){

 oled.setTextXY(5,3);
 oled.putString(String(minute));
 oled.setTextXY(5,8);
 oled.putString(String(second));
 oled.setTextXY(5,13);
 oled.putString(String(milisecond));
 oled.setTextXY(5,6);
 oled.putString(“:”);
 oled.setTextXY(5,11);
 oled.putString(“:”);
 oled.putString(“-finished-”);
 oled.setTextXY(7,5);
 delay(10000);
 //print the minute, second, millisecond values and “-finisehd-” to the x and y
coordinates determined on the OLED screen.
 }
}

PicoBricks Project Book

77

GitHub My Timer Project Page

http://rbt.ist/mytimer

PicoBricks Project Book

78

2.9. Alarm Clock

Global warming is affecting the climate of our world worse every day. Countries take
many precautions and sign agreements to reduce the effects of global warming.
The use of renewable energy sources and the efficient use of energy is an issue
that needs attention everywhere, from factories to our rooms. Many reasons such
as keeping road and park lighting on in cities due to human error, and the use of
high energy consuming lighting tools reduce energy efficiency. Many electronic and
digital systems are developed and programmed by engineers to measure the light,
temperature and humidity values of the environment and ensure that they are used
only when needed and in the right amounts.

In this project, we will create a timer alarm that adjusts for daylight using the light
sensor in Picobricks.

2.9.1. Project Details and Algorithm

In this project we will make a simple alarm application. The alarm system we will
design is designed to sound automatically in the morning. For this, we will use LDR
sensor in the project..At night, the OLED screen will display a good night message to
the user, in the morning, an alarm will sound with a buzzer sound, a good morning
message will be displayed on the screen, and the RGB LED will light up in white for
light notification. The user will have to press the button of Picobricks to stop the
alarm. After these processes, which continue until the alarm is stopped, when the
button is pressed, the buzzer and RGB LED will turn off and a good day message will
be displayed on the OLED screen.

2.9.2. Wiring Diagram

PicoBricks Project Book

79

2.9.3. Project Image

2.9.4. Project Proposal

You can improve the project by adding a melody as an alarm sound instead of a
beep. Or, instead of an alarm set according to daylight with the LDR sensor, you can
develop an alarm that sounds at the specified time, where the time information is
arranged via the button and OLED screen.

2.9.5. Coding the Project with MicroBlocks

First of all, add the OLED Graphics library to the program and add the initialize i2c
and write blocks from the OLED category under the when started block so that
“Good night” is written on the screen when Pico starts. If you are doing this project
during the day, you will need to cover the LDR sensor with your hand to test the
program. For this reason, after the write block, wait for 2 seconds with the wait block
and turn off the LDR sensor with your hand within those 2 seconds.

In the autonomous lighting project, we read the LDR sensor values with the say
block and saw values above 90 when the environment was bright and below 90
when it was dark.In this project, we can use the value 90 to determine the day and
night difference. By using the say block, you can view the LDR sensor value in your
environment and change the value that the alarm sounds.

When the value from the LDR sensor is greater than 90, we must use the when
block and specify the condition for the alarm to activate. Under the when block, we
should use the repeat until block so that the alarm can continue to sound until the
user presses the button, and we must specify the block of pressing the button of
Picobricks as a condition. You should place the RGB LED, buzzer and OLED screen
codes inside the repeat until block, which will run the blocks in it until the specified
condition is met. You can change the screen texts, RGB LED color and buzzer playing

PicoBricks Project Book

80

time.

The codes written so far are the codes that perform the actions to be taken when the
system starts and in the morning. Now, let’s write the necessary codes for the actions
to be taken after the button is pressed while the alarm is sounding.

When the button is pressed while the alarm is sounding, the program will go out of
the repeat until block and run the codes in the next line. For this reason, you should
turn off the RGB LED and write the screen text blocks under the repeat until block.

PicoBricks Project Book

81

 When you type all the codes and press the Start button, “Good night” will be
displayed on the screen and if it is dark, the program will wait until it is bright. If you
are testing the project in a bright environment, turn off the LDR sensor with your
hand within 2 seconds after pressing the Start button. Then, when the environment
is illuminated, you will see that the alarm is working with the OLED screen, buzzer
and RGB LED. You can stop the alarm by pressing the button.

Click to access the project’s MicroBlocks codes.

2.9.6. Micropython Codes of the Project

from machine import Pin, I2C, ADC, PWM#to access the hardware on the pico
from picobricks import SSD1306_I2C#OLED Screen Library
import utime
from picobricks import WS2812#ws8212 library

#OLED Screen Settings
WIDTH = 128
HEIGHT = 64

sda=machine.Pin(4)
scl=machine.Pin(5)
#initialize digital pin 4 and 5 as an OUTPUT for OLED Communication

i2c=machine.I2C(0,sda=sda, scl=scl, freq=1000000)
neo = WS2812(pin_num=6, num_leds=1, brightness=0.3)#initialize digital pin 6 as an
OUTPUT for NeoPixel

oled = SSD1306_I2C(WIDTH, HEIGHT, i2c)
ldr = ADC(Pin(27))#initialize digital pin 6 as an OUTPUT for NeoPixel
button = Pin(10,Pin.IN,Pin.PULL_DOWN)#initialize digital pin 10 as an INPUT for
button
buzzer = PWM(Pin(20, Pin.OUT))#initialize digital pin 20 as an OUTPUT for buzzer
buzzer.freq(1000)

BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
#RGB black and white color code
oled.fill(0)
oled.show()

PicoBricks Project Book

82

neo.pixels_fill(BLACK)
neo.pixels_show()

if ldr.read_u16()<4000:
 wakeup = True
else:
 wakeup = False

while True:
 while wakeup==False:
 oled.fill(0)
 oled.show()
 oled.text(“Good night”,25,32)
 oled.show()
 #Show on OLED and print “Good night”
 utime.sleep(1)
 if ldr.read_u16()<4000:
 while button.value()==0:
 oled.fill(0)
 oled.show()
 oled.text(“Good morning”,15,32)
 oled.show()
 #Print the minutes, seconds, milliseconds and “Goog morning” values to the
X and Y coordinates determined on the OLED screen.
 neo.pixels_fill(WHITE)
 neo.pixels_show()
 buzzer.duty_u16(6000)
 utime.sleep(1)
 #wait for one second
 buzzer.duty_u16(0)
 utime.sleep(0.5)
 #wait for half second
 wakeup=True
 neo.pixels_fill(BLACK)
 neo.pixels_show()
 oled.fill(0)
 oled.show()
 oled.text(“Have a nice day!”,0,32)
 #Print the minutes, seconds, milliseconds and “Have a nice day!” values to the X
and Y coordinates determined on the OLED screen.
 oled.show()
 if ldr.read_u16()>40000:

PicoBricks Project Book

83

 wakeup= False

 utime.sleep(1)

 #wait for one second

2.9.7. Arduino C Codes of the Project

#include <Adafruit_NeoPixel.h>
#ifdef __AVR__
#include <avr/power.h>
#endif
#define PIN 6

#define NUMPIXELS 1
Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
#include <Wire.h>
#include “ACROBOTIC_SSD1306.h”
int button;
void setup() {
 Wire.begin();
 oled.init();
 oled.clearDisplay();

#if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
 clock_prescale_set(clock_div_1);
#endif
 pinMode(10,INPUT);
 pinMode(27,INPUT);
 pinMode(20,OUTPUT);

 pixels.begin();
 pixels.setPixelColor(0, pixels.Color(0, 0, 0));
 pixels.show();
}

void loop() {

 oled.setTextXY(4,3);
 oled.putString(“Good night”);

 if (analogRead(27)<200){

PicoBricks Project Book

84

 while(!(button == 1)){

 button=digitalRead(10);

 oled.setTextXY(4,2);
 oled.putString(“Good morning”);
 pixels.setPixelColor(0, pixels.Color(255, 255, 255));
 pixels.show();
 tone(20,494);
 }
 oled.clearDisplay();
 oled.setTextXY(4,1);
 oled.putString(“Have a nice day”);
 noTone(20);
 pixels.setPixelColor(0, pixels.Color(0, 0, 0));
 pixels.show();
 delay(10000);
 }
}

GitHub Alarm Clock Project Page

http://rbt.ist/alarm

PicoBricks Project Book

85

2.10. Know Your Color

LEDs are often used on electronic systems. Each button can have small LEDs next
to each option. By making a single LED light up in different colors, it is possible to
do the work of more than one LED with a single LED. LEDs working in this type are
called RGB LEDs. It takes its name from the initials of the color names Red, Green,
Blue. Another advantage of this LED is that it can light up in mixtures of 3 primary
colors. Purple, turquoise, orange…

In this project you will learn about the randomness used in every programming
language. We will prepare a enjoyable game with the RGB LED, OLED screen and
button module of Picobricks.

2.10.1. Project Details and Algorithm

The game we will build in the project will be built on the user knowing the colors
correctly or incorrectly. One of the colors red, green, blue and white will light up
randomly on the RGB LED on Picobricks, and the name of one of these four colors
will be written randomly on the OLED screen at the same time. The user must press
the button of Picobricks within 1.5 seconds to use the right of reply. The game will
be repeated 10 times, each repetition will get 10 points if the user presses the button
when the colors match, or if the user does not press the button when they do not
match. If the user presses the button even though the colors do not match, he will
lose 10 points. After ten repetitions, the user’s score will be displayed on the OLED
screen. If the user wishes, he may not use his right of reply by not pressing the
button.

2.10.2. Wiring Diagram

PicoBricks Project Book

86

2.10.3. Project Image

2.10.4. Project Proposal

You can make the game more enjoyable by making it a little more difficult. For
example, you can speed up the game by reducing the repetition time of the colors.
Or, instead of losing points when the user presses the button in the wrong place, you
can finish the game and start it again.

2.10.5. Coding the Project with MicroBlocks

Since we will use an OLED display in the project, you must first add the OLED
Graphics library to the program. Then you have to create two variables named
OLED color and RGB color to generate random colors on the OLED screen and RGB
LED. In order for the program to work more stable, we can perform the random
determination of colors by creating a function and calling this function. Functions
are created by structuring codes consisting of one or more operation lines as a code
block. Once functions are created, they can be called anywhere in the program using
just the function name. To create a function, you must click the My Blocks button in
the code categories section, then click the Add a command block button and name
the function you will create in the Enter function name window that opens. We can
give the name random_color to the function we will create in this project.

PicoBricks Project Book

87

After creating the function, the define random_color block will come to the code
writing area. You can write function codes under this block. In the random_color
function, we first assign a random number between 1 and 4 to the OLED_color and
RGB_color variables that we created before. For this, you should use the random
block in the operators category. Then you should compare the random values
assigned to the variables with the if block and edit the RGB LED color and OLED
screen texts.

After defining the random_color function, we can write our program under the when
started block. In this code group, you must first write the codes that should run
when the program starts. After the start blocks, you should call the random_color
function you created earlier inside the repeat 10 block. After running random_color
10 times, you should wait for a while, clear the screen and turn off the RGB LED.
You have to repeat all these steps 10 times. When you run the codes so far, you will
see 10 times random colors appear on the RGB LED and OLED screen at 1.5 second
intervals.

PicoBricks Project Book

88

At this stage, when the colors on the OLED screen and RGB LED are the same, create
two more variables called Score and x for the user to press the button and earn
points. Add the Picobricks button pressing block as a condition to the when block.
Then compare the two if blocks to see if the color variables are equal. If the colors
are the same, increase the score variable by 10, if not, decrease it by 10. The reason
why we use the x variable here is to increase the score only once. If you do not use
the variable x as the second condition in the and operator, the Score variable will
increase by 10 momentarily while the button is pressed.

PicoBricks Project Book

89

After arranging the actions that the program should do when the button is pressed,
when the game is over, you must add the necessary codes to the main program for
the user’s score to be written on the screen. Specify the initial values of the score and
x variables as “0” and assign the value of the x variable to “0” at each iteration within
10 iterations. In this way, each time the button is pressed in the game, a one-time
score increase will occur.

After completing the code writing process, start the game with the Start button and
test it. If everything went well, random colors will appear on the OLED screen and
RGB LED 10 times at 1.5 second intervals. When the colors are the same, if the button
is pressed, the score will increase by 10 points and when the game is over, the score
will be displayed on the screen.

PicoBricks Project Book

90

Click to access the project’s MicroBlocks codes.

2.10.6. MicroPython Codes of the Project

from machine import Pin, I2C
from picobricks import SSD1306_I2C
import utime
import urandom
import _thread
from picobricks import WS2812

WIDTH = 128
HEIGHT = 64
sda=machine.Pin(4)
scl=machine.Pin(5)
i2c=machine.I2C(0,sda=sda, scl=scl, freq=1000000)
ws = WS2812(pin_num=6, num_leds=1, brightness=0.3)

oled = SSD1306_I2C(WIDTH, HEIGHT, i2c)

button = Pin(10,Pin.IN,Pin.PULL_DOWN)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
WHITE = (255, 255, 255)

PicoBricks Project Book

91

BLACK = (0, 0, 0)

oled.fill(0)
oled.show()

ws.pixels_fill(BLACK)
ws.pixels_show()

global button_pressed
score=0
button_pressed = False

def random_rgb():
 global ledcolor
 ledcolor=int(urandom.uniform(1,4))
 if ledcolor == 1:
 ws.pixels_fill(RED)
 ws.pixels_show()
 elif ledcolor == 2:
 ws.pixels_fill(GREEN)
 ws.pixels_show()
 elif ledcolor == 3:
 ws.pixels_fill(BLUE)
 ws.pixels_show()
 elif ledcolor == 4:
 ws.pixels_fill(WHİTE)
 ws.pixels_show()

def random_text():
 global oledtext
 oledtext=int(urandom.uniform(1,4))
 if oledtext == 1:
 oled.fill(0)
 oled.show()
 oled.text(“RED”,45,32)
 oled.show()
 elif oledtext == 2:
 oled.fill(0)
 oled.show()
 oled.text(“GREEN”,45,32)
 oled.show()

PicoBricks Project Book

92

 elif oledtext == 3:
 oled.fill(0)
 oled.show()
 oled.text(“BLUE”,45,32)
 oled.show()
 elif oledtext == 4:
 oled.fill(0)
 oled.show()
 oled.text(“WHITE”,45,32)
 oled.show()

def button_reader_thread():
 while True:
 global button_pressed
 if button_pressed == False:
 if button.value() == 1:
 button_pressed = True
 global score
 global oledtext
 global ledcolor
 if ledcolor == oledtext:
 score += 10
 else:
 score -= 10
 utime.sleep(0.01)

_thread.start_new_thread(button_reader_thread, ())

oled.text(“The Game Begins”,0,10)
oled.show()
utime.sleep(2)

for i in range(10):
 random_text()
 random_rgb()
 button_pressed=False
 utime.sleep(1.5)
 oled.fill(0)
 oled.show()
 ws.pixels_fill(BLACK)
 ws.pixels_show()

PicoBricks Project Book

93

utime.sleep(1.5)
oled.fill(0)
oled.show()
oled.text(“Your total score:”,0,20)
oled.text(str(score), 30,40)
oled.show()

2.10.7. Arduino C Codes of the Project

#include <Adafruit_NeoPixel.h>
#define PIN 6
#define NUMPIXELS 1
Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
#define DELAYVAL 500
#include <Wire.h>
#include “ACROBOTIC_SSD1306.h” //define libraries
int OLED_color;
int RGB_color;
int score = 0;
int button = 0;

void setup() {
 // put your setup code here, to run once:
 Wire.begin();
 oled.init();
 oled.clearDisplay();

 pixels.begin();
 pixels.clear();
 randomSeed(analogRead(27));

}

void loop() {
 // put your main code here, to run repeatedly:
 oled.clearDisplay();
 oled.setTextXY(3,1);

PicoBricks Project Book

94

 oled.putString(“The game begins”);
 pixels.setPixelColor(0, pixels.Color(0, 0, 0));
 pixels.show();
 delay(2000);
 oled.clearDisplay();

 for (int i=0;i<10;i++){
 button = digitalRead(10);
 random_color();
 pixels.show();
 unsigned long start_time = millis();
 while (button == 0) {
 button = digitalRead(10);
 if (millis() - start_time > 2000)
 break;
 }
 if (button == 1){

 if(OLED_color==RGB_color){
 score=score+10;
 }
 if(OLED_color!=RGB_color){
 score=score-10;
 }
 delay(200);
 }
 oled.clearDisplay();
 pixels.setPixelColor(0, pixels.Color(0, 0, 0));
 pixels.show();
 }

 String string_scrore=String(score);
 oled.clearDisplay();
 oled.setTextXY(2,5);
 oled.putString(“Score: “);
 oled.setTextXY(4,7);
 oled.putString(string_scrore);
 oled.setTextXY(6,5);
 oled.putString(“points”);
 // print final score on OLED screen

PicoBricks Project Book

95

 delay(10000);
}

void random_color(){

 OLED_color = random(1,5);
 RGB_color = random(1,5);
 // generate numbers between 1 and 5 randomly and print them on the screen
 if (OLED_color == 1){
 oled.setTextXY(3,7);
 oled.putString(“red”);
 }
 if (OLED_color == 2){
 oled.setTextXY(3,6);
 oled.putString(“green”);
 }
 if (OLED_color == 3){
 oled.setTextXY(3,6);
 oled.putString(“blue”);
 }
 if (OLED_color == 4){
 oled.setTextXY(3,6);
 oled.putString(“white”);
 }
 if (RGB_color == 1){
 pixels.setPixelColor(0, pixels.Color(255, 0, 0));
 }
 if (RGB_color == 2){
 pixels.setPixelColor(0, pixels.Color(0, 255, 0));
 }
 if (RGB_color == 3){
 pixels.setPixelColor(0, pixels.Color(0, 0, 255));
 }
 if (RGB_color == 4){
 pixels.setPixelColor(0, pixels.Color(255, 255, 255));
 }

}

PicoBricks Project Book

96

GitHub Know Your Color Project Page

http://rbt.ist/color

PicoBricks Project Book

97

2.11. Magic Lamp
Project Author: Abdullah KAYA

Most of us have seen lamps flashing magically or doors opening and closing with the
sound of clapping in movies. There are set assistants who close these doors and turn
off the lamps in the shootings. What if we did this automatically? There are sensors
that convert the sound intensity change that we expect to occur in the environment
into an electrical signal. These are called sound sensors.

2.12.1. Project Details and Algorithm

In this project, we will turn the LED module on the picobricks board on and off
with the sound. In our project, which we will build using the Picobricks sound level
sensor, we will perform the on-off operations by making a clap sound. As in previous
projects, in projects where sensors are used, before we start to write the codes, it
will make your progress easier to see what values the sensor sends in the operations
we want to do by just running the sensor, and then writing the codes of the project
based on these values.

2.12.2. Wiring Diagram

2.11.3. Construction Stages of the Project

During the construction of the project, two wire sockets and sockets were used. The
two ends, which were cut by cutting the phase cable, were connected to the relay.
You should pay attention to the insulation with electrical tape so that a dangerous
situation does not occur when you cut the other wire. If you use a three-wire socket,
you must cut the brown wire with the phase lead and connect it to the relay.

PicoBricks Project Book

98

2.11.4. Project Proposal

You can present the player with instructions and notifications on the OLED screen.
In addition, you can prepare a more exciting game by showing on the OLED screen
how many milliseconds after the game starts, the game is over.

2.11.5. Coding the Project with MicroBlocks

While writing the Microblocks codes, we first create a variable called x and set the
initial value of both the variable and the relay as false. We will use the x variable to
turn the lamp off if it is on and on if it is off.

The digital sound sensor sends us a value of “0” when sound is detected through
the digital pin it is connected to, and “1” when idle. MicroBlocks takes these values
as “True” and “False”. In the codes we wrote, if the value coming from digital pin 16 is
“0”, that is “False”, the relay will be activated. When the relay is activated, the value of
the x variable will be checked, if x is False, the relay will turn on and the value of the x
variable will be changed to “True”, otherwise the relay will be closed and the value of
the x variable will be assigned as “False” again. These codes will make the lamp turn
on when we clap and turn off the lamp when we clap again.

PicoBricks Project Book

99

Click to access the project’s MicroBlock codes.

2.11.6. MicroPython Codes of the Project

from machine import Pin
sensor=Pin(16,Pin.IN)
relay=Pin(12,Pin.OUT)
x=0
while True:
 if sensor.value()==0:
 if x==0:
 relay.value(1)
 x=1
 else:
 relay.value(0)
 x=0

2.11.7. Arduino C Codes of the Project

void setup() {

PicoBricks Project Book

100

 // put your setup code here, to run once:
 pinMode(1,INPUT);
 pinMode(7,OUTPUT);
 //define the input and output pins
}

void loop() {
 // put your main code here, to run repeatedly:

 Serial.println(digitalRead(1));

 if(digitalRead(1)==1){
 digitalWrite(7,HIGH);
 delay(3000);
 }
 else{
 digitalWrite(7,LOW);
 delay(1000);
 }

}

GitHub Magic Lamp Project Page

http://rbt.ist/lamp

PicoBricks Project Book

101

2.12. Smart Cooler
Project Author: Abdullah KAYA

Air conditioners are used to cool in the summer and warm up in the winter. Air
conditioners adjust the degree of heating and cooling according to the temperature
of the environment. While cooking the food, the ovens try to rise to the temperature
value set by the user and maintain that temperature. These two electronic
devices use special temperature sensors to control the temperature. In addition,
temperature and humidity are measured together in greenhouses. In order to keep
these two values in balance at the desired level, it is tried to provide air flow with the
fan.

In Picobricks, you can measure temperature and humidity separately and interact
with the environment with these measurements. In this project, we will prepare
a cooling system that automatically adjusts the fan speed according to the
temperature with Picobricks. In this way, you will learn the DC motor operating
system and motor speed adjustment.

2.12.1. Project Details and Algorithm

In our project, we will firstly display the temperature values measured by the DHT11
temperature and humidity sensor on Picobricks. Then, we will define a temperature
limit and write the necessary codes for the DC motor connected to Picobricks to
start rotating when the temperature value from the DHT11 module reaches this limit,
and for the DC motor to stop when the temperature value falls below the limit we
have determined.

2.12.2. Wiring Diagram

PicoBricks Project Book

102

2.12.3. Project Image

2.12.4. Project Proposal

Using the OLED screen on Picobricks, you can print the temperature on the screen
and keep track the temperature at which the fan is activated.

Picobricks has a modular structure, modules can be separated by breaking and
can be used by connecting to Pico board with grove cables. By mounting the
smart cooling circuit we made in our project to the robot car chassis, you can
develop a project that navigates autonomously in your environment and cools the
environment at the same time.

2.12.5. Coding the Project with MicroBlocks

In order to decide when the fan will start and work, we first need to see the values
coming from the DHT11 sensor and act according to these values. You can use the
say123 block in the Output category for this. Then drag and drop the PicoBricks
temperature block in the Picobricks category to the circle that 123 in the say block.
See the values from the sensor by pressing the start button. You should see values
around 25 degrees at room temperature. Hold for a while by touching the DHT11
module on the Picobricks. You will see that the temperature value from the sensor
increases due to the heat on the finger of the DHT11. After you see the values, you
can delete the say and temperature blocks.

After you have determined a temperature value for the fan to activate according to
your environment, you can carry out the project by using the Picobricks set motor
block in the if else block. You can change the fan speed between 0 and 100.

PicoBricks Project Book

103

Click to access the project’s MicroBlock codes.

2.12.6. MicroPython Codes of the Project

Codes that print to the shell window of the current temperature:

from machine import Pin
from dht import DHT11
from utime import sleep
dht_sensor = DHT11(11)

while True:
 sleep(1) # It was used for DHT11 to measure.
 dht_sensor.measure() # Use the sleep() command before this line.
 temp=dht_sensor.temperature()

 print(temp)

Project Codes:

from machine import Pin
from picobricks import DHT11
import utime

LIMIT_TEMPERATURE = 20 #define the limit temperature

dht_sensor = DHT11(Pin(11, Pin.IN, Pin.PULL_DOWN))
m1 = Pin(21, Pin.OUT)
m1.low()
dht_read_time = utime.time()

PicoBricks Project Book

104

#define input-output pins

while True:
 if utime.time() - dht_read_time >= 3:
 dht_read_time = utime.time()
 dht_sensor.measure()
 temp= dht_sensor.temperature
 print(temp)
 if temp >= LIMIT_TEMPERATURE:
 m1.high()
 #operate if the room temperature is higher than the limit temperature
 else:
 m1.low()

2.12.7. Arduino C Codes of the Project

#include <DHT.h>

#define LIMIT_TEMPERATURE 27
#define DHTPIN 11
#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE);
float temperature;

void setup() {
 // put your setup code here, to run once:
 Serial.begin(115200);
 dht.begin();
 pinMode(21,OUTPUT);

}

void loop() {
 // put your main code here, to run repeatedly:
 delay(100);
 temperature = dht.readTemperature();
 Serial.print(“Temp: “);
 Serial.println(temperature);
 if(temperature > LIMIT_TEMPERATURE){

PicoBricks Project Book

105

 digitalWrite(21,HIGH);
 } else{
 digitalWrite(21,LOW);
 }

}

GitHub Smart Cooler Project Page

http://rbt.ist/cooler

PicoBricks Project Book

106

2.13. Buzz Wire Game

Projects don’t always have to be about solving problems and making things easier.
You can also prepare projects to have fun and develop yourself. Attention and
concentration are features that many people want to develop. The applications that
we can do with this are quite interesting. How about making Buzz Wire Game with
Picobricks?

You must have heard the expression that computers work with 0s and 1s. 0
represents the absence of electricity and 1 represents its presence. 0 and 1’s come
together with a certain number and sequence of combinations to form meaningful
data. In electronic systems, 0s and 1s can be used to directly control a situation. Is the
door closed or not? Is the light on or off? Is the irrigation system on or not? In order
to obtain such information, a status check is carried out.

In this project, we will electronically prepare the attention and concentration
developer Buzz Wire Game with the help of a conductor wire using the buzzer and
LED module with Picobricks. While preparing this project, you will have learned an
input technique that is not a button but will be used like a button.

2.13.1. Project Details and Algorithm

To prepare the project, you need 2 male-male jumper cables and a 15 cm long
conductor bendable wire. When the player is ready, it will be asked to press the
button to start the game. If the jumper cable touches the conductor wire in the
player’s hand when the button is pressed, Picobricks will detect this and give an
audible and written warning. The time from the start of the game to the end will also
be displayed on the OLED screen.

We reset the timer after the user presses the button. Then we will give a voltage
of 3.3V to the conductor wire connected to the GPIO1 pin of Picobricks. One end of
the cable held by the player will be connected to the GND pin on the Picobricks. If
the player touches the jumper cable in his hand to the conductive wire, the GPIO1
pin will drop to the Passive/Off/0 position. Then, it will announce that the game is
over, and there will be light, written and audio feedback, then the elapsed time will
be shown on the OLED screen in milliseconds. After 5 seconds, the player will be
prompted to press the button to restart.

PicoBricks Project Book

107

2.13.2. Wiring Diagram

2.13.3. Project Proposal

You can make physical and software improvements to the project. By covering the
start and end points with insulating tape, you can prevent the player from having
problems starting and finishing the game. In terms of software, when the player
brings the cable to the other end without touching the wire, press the button and
you can see the score on the OLED screen.

2.13.4. Coding the Project with MicroBlocks

When PicoBricks starts, we open an endless loop immediately after the OLED screen
starts. Because when the game is over, it will return to the beginning. Inside the
endless loop, we firstly turn off the red LED and place the start message expressions
on the OLED screen. Then we place the wait until block from the Control category
and wait for the loop until Picobricks’ button is clicked.

After the button is pressed, we add an expression to the OLED screen that the
game starts in the continuation of the codes. Then we open the GPIO1 pin and give
a voltage of 3.3V. After resetting the timer, we wait until the GPIO1 pin 0 is closed in
the wait until block. Here, the state of the player touching the wire that is in player’s
hand to the wire is checked. When touch is detected, the cycle continues from
where it left off and the necessary illuminated, written and audible notifications are
presented. Finally, wait 5 seconds and return to the beginning of the loop.

PicoBricks Project Book

108

Click to access the codes of the project.

2.13.5. Construction Stages of the Project

Along with the PicoBricks base kit,

1: 2 20 cm male-male jumper cables. One end of the cable to be attached to the GND
will be stripped 4-5 cm and made into a ring.

2: 15-20 cm conductive wire with a thickness of 0.8 mm. Prepare your materials.

PicoBricks Project Book

109

Bend the conductor wire on the protoboard as you wish and pass it through the
holes, before passing one end, you must pass the male end, which is connected to
the GND pin on the PicoBoard, the other end of the cable you have made into a ring.

3: Conductor Wire

4: Jumper cable with one end connected to the GND pin with a looped end.

5: One end of the jumper cable, which has both male ends, into the hole right next to
the end of the conductive wire you placed on the protoboard

6: Twist the end of the jumper wire and the end of the conductor wire together
under the protoboard.

7: Bend the other end of the conductor wire placed on the protoboard so that it does
not come out.

8: Connect the other male end of the jumper cable that you wrapped around the
end of the conductor wire in step 6 to the pin no. GPIO1 on the Picoboard

PicoBricks Project Book

110

If you have completed the installation, you can start the game after installing the
codes. Have fun. :)

2.13.6. MicroPython Codes of the Project

from machine import Pin, I2C, Timer #to access the hardware on the pico
from picobricks import SSD1306_I2C #OLED Screen Library
from utime import sleep # time library

#OLED Screen Settings
WIDTH = 128

PicoBricks Project Book

111

HEIGHT = 64

sda=machine.Pin(4)#initialize digital pin 4 and 5 as an OUTPUT for OLED
Communication
scl=machine.Pin(5)
i2c=machine.I2C(0,sda=sda, scl=scl, freq=1000000)
oled = SSD1306_I2C(WIDTH, HEIGHT, i2c)

wire=Pin(1,Pin.OUT)#initialize digital pin 1 as an OUTPUT
led = Pin(7,Pin.OUT)#initialize digital pin 7 and 5 as an OUTPUT for LED
buzzer=Pin(20, Pin.OUT)#initialize digital pin 20 as an OUTPUT for Buzzer
button=Pin(10,Pin.IN,Pin.PULL_DOWN)#initialize digital pin 10 as an INPUT for button
endtime=0

while True:
 led.low()
 oled.fill(0)
 oled.show()
 oled.text(“<BUZZ WIRE GAME>”,0,0)
 oled.text(“Press the button”,0,17)
 oled.text(“TO START!”,25,35)
 oled.show()
 #When button is ‘0’, OLED says ‘GAME STARTED’
 while button.value()==0:
 print(“press the button”)
 oled.fill(0)
 oled.show()
 oled.text(“GAME”,25,35)
 oled.text(“STARTED”,25,45)
 oled.show()
 wire.high()
 timer_start=utime.ticks_ms()
 #When wire is ‘1’, OLED says ‘GAME OVER’
 while wire.value()==1:
 print(“Started”)
 endtime=utime.ticks_diff(utime.ticks_ms(), timer_start)
 print(endtime)
 oled.fill(0)
 oled.show()
 oled.text(“GAME OVER!”,25,35)
 oled.text(endtime + “ms” ,25,45)

PicoBricks Project Book

112

 oled.show()
 led.high()#LED On
 buzzer.high()#Buzzer On
 sleep(5)#Delay

2.13.7. Arduino C Codes of the Project

#include <Wire.h>
#include “ACROBOTIC_SSD1306.h”

int Time=0;
unsigned long Old_Time=0;

void setup() {

 pinMode(20,OUTPUT);
 pinMode(7,OUTPUT);
 pinMode(1,OUTPUT);
 pinMode(10,INPUT);

 Wire.begin();
 oled.init();
 oled.clearDisplay();

#if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
 clock_prescale_set(clock_div_1);
#endif
}

void loop() {

 digitalWrite(7,LOW);

 oled.setTextXY(2,1);
 oled.putString(“BUZZ WIRE GAME”);
 oled.setTextXY(4,2);
 oled.putString(“Press Button”);
 oled.setTextXY(5,3);
 oled.putString(“TO START!”);

PicoBricks Project Book

113

 while (!(digitalRead(10)==1)){

 }

 oled.clearDisplay();
 oled.setTextXY(3,6);
 oled.putString(“GAME”);
 oled.setTextXY(5,4);
 oled.putString(“STARTED”);

 digitalWrite(1,HIGH);
 Old_Time=millis();

 while(!(digitalRead(1)==0)){

 Time=millis()-Old_Time;
 }

 String(String_Time)=String(Time);

 oled.clearDisplay();
 oled.setTextXY(3,4);
 oled.putString(“GAME OVER”);
 oled.setTextXY(5,4);
 oled.putString(String_Time);
 oled.setTextXY(5,10);
 oled.putString(“ms”);

 digitalWrite(7,HIGH);
 digitalWrite(20,HIGH);
 delay(500);
 digitalWrite(20,LOW);
 delay(5000);

 Time=0;
 Old_Time=0;
 oled.clearDisplay();
}

PicoBricks Project Book

114

GitHub Buzz Wire Game Project Page

http://rbt.ist/buzzwire

PicoBricks Project Book

115

2.14. Dinosaur Game

If the electronic systems to be developed will fulfill their duties by pushing, pulling,
turning, lifting, lowering, etc., pneumatic systems or electric motor systems are used
as actuators in the project. Picobricks supports two different engine types so that
you can produce systems that can activate the codes you write in your projects.
DC motor and Servo motors in which the movements of DC motors are regulated
electronically. Servo motors are motors that rotate to that angle when the rotation
angle value is given. In RC boats, servo motors are used with the same logic to
change the direction of the vehicle. In addition, advanced servo motors known as
smart continuous servos, which can rotate full-round, are also used in the wheels of
the smart vacuum cleaners we use in our homes.

In this project you will learn how to control Servo motors with PicoBricks.

2.14.1. Project Details and Algorithm

While writing the project codes, we will first fix the LDR sensor on the computer
screen and read the sensor data on the white and black background, then write the
necessary codes for the servo motor to move according to these data.In this project,
we will automatically play Google Chrome offline dinasour game to picobricks. In the
game, Picobricks will automatically control the dinosaur’s movements by detecting
obstacles. We will use the picobricks LDR sensor to detect the obstacles in front
of the dinosaur during the game. LDR can send analog signals by measuring the
amount of light touching the sensor surface. By fixing the sensor on the computer
screen, we can detect if there is an obstacle in front of the dinosaur by taking
advantage of the difference in the amount of light between the white and black
colors. When an obstacle is detected, we can use a servo motor to automatically
press the spacebar on the keyboard. In this way, the dinosaur will easily overcome
the obstacles. While writing the project codes, we will firstly fix the LDR sensor on
the computer screen and read the sensor data on the white and black background,
then write the necessary codes for the servo motor to move according to these data.

PicoBricks Project Book

116

2.14.2. Wiring Diagram

Note: There are triple pins on the right and left side of the motor driver grove cable
entry and these pins are short-circuited with 2 jumpers. When using a DC motor,
the jumper that should be attached on the DC motor side should be removed when
using a servo motor and attached to the servo side.

2.14.3. Project Image

PicoBricks Project Book

117

2.14.4. Project Proposal

At first in the game, the ground color is white and the figures are black. After a
certain stage, the colors are reversed. For this reason, LDR sensor data is changing.
To solve this problem, you can use variables and functions to run one code group
when the game is on a white background, another code group when it is on a black
background, or you can install a second LDR sensor to detect this difference.

Picobricks and its modules allow us to develop many projects from simple to
complex. You can also use it in different games such as minecraft by developing this
project, which we automatically play a computer game that we play in daily life on
Picobricks.

2.14.5. Coding the Project with MicroBlocks

For the project to work, you must first read the LDR sensor values that will change
according to your environment. You can use the say123 block for this. Open Chrome
offline dinosaur game. Fix the sensor 3-4 cm to the right from the dinosaur and just
above the road line with the help of tape. After making sure that the sensor touches
the screen, read the sensor values. The values when on the white ground will be
different from the values when the obstacle comes. Convert the limit value, which
you will determine by observing the difference, to the code with the when block.
When the LDR sensor value is less than the value you set, write the necessary codes
to change the angle of the servo by 25 degrees and return to its original position, and
fix the servo motor on your keyboard so that it automatically presses the space key.

Click to access the codes of the project.

2.14.6. MicroPython Codes of the Project

from machine import Pin, ADC, PWM #to access the hardware on the pico
from utime import sleep #time library

ldr=ADC(27) #initialize digital pin 27 for LDR

PicoBricks Project Book

118

servo=PWM(Pin(21)) #initialize digital PWM pin 27 for Servo Motor
servo.freq(50)

while True: #When LDR data higher than 40000
 sleep(0.01)
 if ldr.read_u16()>4000:
 servo.duty_u16(2000) #sets position to 180 degrees
 sleep(0.1) #delay
 servo.duty_u16(1350) #sets position to 0 degrees
 sleep(0.5) #delay

2.14.7. Arduino C Codes of the Project

#include <Servo.h>
Servo myservo;

void setup() {
 myservo.attach(22);
 myservo.write(20);
 pinMode(27,INPUT);
}

void loop() { // put your main code here, to run repeatedly:

 int light_sensor=analogRead(27);

 if(light_sensor>100){

 int x=45;
 int y=20;

 myservo.write(x);
 delay(100);
 myservo.write(y);
 delay(500);
 }
}

PicoBricks Project Book

119

GitHub Dinosaur Game Project Page

http://rbt.ist/dinosaur

PicoBricks Project Book

120

2.15. Night and Day

How about playing the Night and Day game you played at school electronically?The
game of night and day is a game in which we put our head on the table when our
teacher says night, and raise our heads when our teacher says day. This game will be
a game that you will use your attention and reflex. In this project, we will use a 0.96”
128x64 pixel I2C OLED display. Since OLED screens can be used as an artificial light
source, you can enlarge the characters on the screen using lenses and mirrors and
reflect them on the desired plane. Systems that can reflect information, road and
traffic information on smart glasses and automobile windows can be made using
OLED screens.

Light sensors are sensors that can measure the light levels of the environment they
are in, also called photodiodes. The electrical conductivity of the sensor exposed
to light changes. We can control the light sensor by coding and develop electronic
systems that affect the amount of light.

2.15.1. Project Details and Algorithm

First we will ask the player to press the button to start the game. Then we will make
the OLED screen of PicoBricks display NIGHT and DAY randomly for 2 seconds each.
The player should cover the LDR sensor with his hand within 2 seconds if the word
written on the OLED screen is NIGHT, and if the word DAY is written on the OLED
screen, the player should raise his hand over the LDR sensor. Each correct response
of the player will earn 10 points. In case of wrong response, the game will be over
and there will be a written statement on the screen stating the end of the game, a
different tone will sound from the buzzer, and the score information will be displayed
on the OLED screen. If the player gives a total of 10 correct responses and gets 100
points, the phrase “Congratulation” will be displayed on the OLED screen and the
buzzer will play notes in different tones.

PicoBricks Project Book

121

2.15.2. Wiring Diagram

2.15.3. Project Image

PicoBricks Project Book

122

2.15.4. Project Proposal

You can develop the project by taking the values that the LDR sensor sends to the
project according to the environment you are in, and automatically determining the
limit to be processed according to the sensor value in the game, that is, by adding
LDR sensor value calibration codes. You can add difficulty level to the game. With
the potentiometer, the difficulty level can be selected as easy, medium and hard.
When easy is selected, the change time for words can be 2 seconds, 1.5 seconds
when medium is selected, 1 second when hard is selected.

2.15.5. Coding the Project with MicroBlocks

When Picobricks starts, we define the OLED screen and print the startup screen
messages. Then create variables named score, start, nightorday and gamerReaction.
Since the game will start after the button is pressed, the start variable is set to 1 after
the wait until block.

 A “change word” will be broadcast every two seconds when the game starts. Thanks
to this news, the expression DAY or NIGHT will be printed on the screen. During the
2 seconds that the word remains on the screen, the player’s reaction will be assigned
to the gamerReaction variable according to the value read from the LDR sensor. If
the LDR value is greater than 80, the top of the sensor is not open, otherwise the
sensor is closed. You can change the value of 80 for your own operating conditions.

At the end of the last two seconds, Correct and Wrong broadcasts are made by
comparing the randomly determined word (nightorday) with gamerReaction. These
broadcasts will be used to earn points in the game and to end the game.

PicoBricks Project Book

123

When a change word message is received at two-second intervals, the screen is
cleared and 0 or 1 value is randomly assigned to the nightorday variable. If the value
is 0, NIGHT, is not 0, DAY is printed on the screen. In order for the broadcast block
to run once, this command sequence is stopped at the end with the stop this task
command.

The code block that contains the codes that increases the score variable by 10 once
for the “Correct” message, which is broadcast when the player reacts correctly, is as
follows.

PicoBricks Project Book

124

The code block, which contains the codes that stop all other codes for the “Wrong”
message, which is broadcast when the player reacts incorrectly, and print the text
about the end of the game and the score value on the screen, is as follows.

When the player completes the game without any errors, the score variable will
take the value 100. The code block containing the codes that caught this and
congratulated the player and stopped the game is as follows.

Click to access the codes of the project.

2.15.6. MicroPython Codes of the Project

from machine import Pin, I2C, Timer, ADC, PWM
from picobricks import SSD1306_I2C
import utime
import urandom
#define the libraries
WIDTH = 128
HEIGHT = 64
#OLED Screen Settings

PicoBricks Project Book

125

sda=machine.Pin(4)
scl=machine.Pin(5)
#initialize digital pin 4 and 5 as an OUTPUT for OLED Communication
i2c=machine.I2C(0,sda=sda, scl=scl, freq=1000000)
oled = SSD1306_I2C(WIDTH, HEIGHT, i2c)
buzzer = PWM(Pin(20))
buzzer.freq(440)
ldr=ADC(Pin(27))
button=Pin(10,Pin.IN,Pin.PULL_DOWN)
#define the input and output pins
oled.text(“NIGHT and DAY”, 10, 0)
oled.text(“<GAME>”, 40, 20)
oled.text(“Press the Button”, 0, 40)
oled.text(“to START!”, 40, 55)
oled.show()
#OLED Screen Texts Settings
def changeWord():
 global nightorday
 oled.fill(0)
 oled.show()
 nightorday=round(urandom.uniform(0,1))
 #when data is ‘0’, OLED texts NIGHT
 if nightorday==0:
 oled.text(“---NIGHT---”, 20, 30)
 oled.show()
 else:
 oled.text(“---DAY---”, 20, 30)
 oled.show()
 #waits for the button to be pressed to activate

while button.value()==0:
 print(“Press the Button”)
 sleep(0.01)

oled.fill(0)
oled.show()
start=1
global score
score=0
while start==1:
 global gamerReaction

PicoBricks Project Book

126

 global score
 changeWord()
 startTime=utime.ticks_ms()
 #when LDR’s data greater than 2000, gamer reaction ‘0’
 while utime.ticks_diff(utime.ticks_ms(), startTime)<=2000:
 if ldr.read_u16()>20000:
 gamerReaction=0
 #when LDR’s data lower than 2000, gamer reaction ‘1’
 else:
 gamerReaction=1
 sleep(0.01)
 #buzzer working
 buzzer.duty_u16(2000)
 sleep(0.05)
 buzzer.duty_u16(0)
 if gamerReaction==nightorday:
 score += 10
 #when score is 10, OLED says ‘Game Over’
 else:
 oled.fill(0)
 oled.show()
 oled.text(“Game Over”, 0, 18, 1)
 oled.text(“Your score “ + str(score), 0,35)
 oled.text(“Press RESET”,0, 45)
 oled.text(“To REPEAT”,0,55)
 oled.show()
 buzzer.duty_u16(2000)
 sleep(0.05)
 buzzer.duty_u16(0)
 break;
 if score==100:
 #when score is 10, OLED says ‘You Won’
 oled.fill(0)
 oled.show()
 oled.text(“Congratulation”, 10, 10)
 oled.text(“Top Score: 100”, 5, 35)
 oled.text(“Press Reset”, 20, 45)
 oled.text(“To REPEAT”, 25,55)
 oled.show()
 buzzer.duty_u16(2000)
 sleep(0.1)

PicoBricks Project Book

127

 buzzer.duty_u16(0)
 sleep(0.1)
 buzzer.duty_u16(2000)
 sleep(0.1)
 buzzer.duty_u16(0)

 break;

2.15.7. Arduino C Codes of the Project

#include <Wire.h>
#include “ACROBOTIC_SSD1306.h”

//define the library

#define RANDOM_SEED_PIN 28
int Gamer_Reaction = 0;
int Night_or_Day = 0;
int Score = 0;
int counter=0;

double currentTime = 0;
double lastTime = 0;
double getLastTime(){
 return currentTime = millis()/1000.0 - lastTime;
}

void _delay(float seconds) {
 long endTime = millis() + seconds * 1000;
 while(millis() < endTime) _loop();
}

void _loop() {
}

void loop() {
 _loop();
}

void setup() {

// put your setup code here, to run once

PicoBricks Project Book

128

 pinMode(10,INPUT);
 pinMode(27,INPUT);
 pinMode(20,OUTPUT);
 randomSeed(RANDOM_SEED_PIN);
 Wire.begin();
 oled.init();
 oled.clearDisplay();

 oled.clearDisplay();
 oled.setTextXY(1,3);
 oled.putString(“NIGHT and DAY”);
 oled.setTextXY(2,7);
 oled.putString(“GAME”);
 oled.setTextXY(5,2);
 oled.putString(“Press BUTTON!”);
 oled.setTextXY(6,4);
 oled.putString(“to START!”);

 Score = 0;

 while(!(digitalRead(10) == 1))
 {
 _loop();
 }
 _delay(0.2);

 while(1){ //while loop
 if (counter==0){

 delay(500);
 Change_Word();
 lastTime = millis()/1000.0;

 while(!(getLastTime() > 2))
 {
 Serial.println(analogRead(27);
 if(analogRead(27) > 500){
 Gamer_Reaction = 0;
 }else{

PicoBricks Project Book

129

 Gamer_Reaction = 1;
 }
 }
//determine the gamer reaction based on the value of the LDR sensor
 digitalWrite(20,HIGH); //turn on the buzzer
 delay(250);
 digitalWrite(20,LOW); //turn off the buzzer

 if(Night_or_Day == Gamer_Reaction){
 Correct();

 }else{
 Wrong();

 } _loop();

 if(Score==100){
 oled.clearDisplay();
 oled.setTextXY(1,1);
 oled.putString(“Congratulation”);
 oled.setTextXY(3,1);
 oled.putString(“Your Score: “);
 oled.setTextXY(3,13);
 String String_Score=String(Score);
 oled.putString(String_Score);
 oled.setTextXY(5,3);
 oled.putString(“Press Reset”);
 oled.setTextXY(6,3);
 oled.putString(“To Repeat!”);
 //write the “Congratulation, Your Score, press Reset, To Repeat!” and score variable
on the x and y coordinates determined on the OLED screen
 for(int i=0;i<3;i++){

 digitalWrite(20,HIGH);
 delay(500);
 digitalWrite(20,LOW);
 delay(500);
 } counter=1; //turn the buzzer on and off three times
 }
 }
 }
}

PicoBricks Project Book

130

void Correct (){
 Score += 10;
 oled.clearDisplay();
 oled.setTextXY(3,4);
 oled.putString(“10 points”);
//increase the score by 10 when the gamer answers correctly
}

void Change_Word (){
 oled.clearDisplay();
 Night_or_Day=random(0,2);

 if (Night_or_Day==0){
 oled.setTextXY(3,6);
 oled.putString(“NIGHT”);
 }else{
 oled.setTextXY(3,7);
 oled.putString(“DAY”);
 }
}
//write “NIGHT” or “DAY” on random OLED screen
void Wrong (){
 oled.clearDisplay();
 oled.setTextXY(1,3);
 oled.putString(“Game Over”);
 oled.setTextXY(3,1);
 oled.putString(“Your Score: “);
 oled.setTextXY(3,13);
 String String_Score=String(Score);
 oled.putString(String_Score);
 oled.setTextXY(5,3);
 oled.putString(“Press Reset”);
 oled.setTextXY(6,3);
 oled.putString(“To Repeat!”);
 // write the score variable and the expressions are quotation marks to the
coordinates determined on the OLED screen.
 digitalWrite(20,HIGH);
 delay(1000);
 digitalWrite(20,LOW);
 counter=1;
}

PicoBricks Project Book

131

GitHub Night and Day Project Page

http://rbt.ist/nightday

PicoBricks Project Book

132

2.16. Voice Controlled Robot Car

Developing and continuing to develop artificial intelligence applications recognize
human characteristics, learn and try to behave like people. We can express artificial
intelligence as software that can learn in its shortest form. Sometimes it learns the
image, sometimes the sound, and sometimes by using the data it collects from the
sensors. It does this thanks to the algorithms determined by the developers, and
it helps in the decision-making processes in the areas it is used according to the
results it has achieved. In short, artificial intelligence applications are now used in
situations where the decision-making process needs to be done quickly and without
errors. From the marketing field to the defense industry, from education to health,
from economy to entertainment, artificial intelligence increases efficiency and
reduces costs.

In this project we will do with PicoBricks, we will make a 2WD car that you can
control by talking. PicoBricks allows you to communicate wirelessly with 2 6V DC
motors and bluetooth.

2.16.1. Project Details and Algorithm

In the project, the robot car kit that comes out of the set will be assembled and
controlled via mobile phone. The HC05 bluetooth module is a module that enables
us to communicate wirelessly between PicoBricks and a mobile phone. Thanks to
the mobile application installed on the mobile phone in the project, the commands
sent from the phone will be transmitted to PicoBricks via the HC05 module and the
robot car will move according to these data. We can direct the robot car with the
forward, backward, right, left buttons from the mobile phone, as well as send data
to PicoBricks with voice command. In the project, we will give voice commands to
control the movements of the robot car.

2.16.2. Wiring Diagram

PicoBricks Project Book

133

2.16.3. Project Proposal

In this project, we moved the robot car by giving voice commands via the mobile
application we installed on the mobile phone. You can control the mechanism
with voice commands or buttons by connecting the HC05 bluetooth module to the
pan-tilt mechanism in the two-axis robot arm project. Likewise, you can try a mobile
application where you can control the robot car in this project using buttons instead
of voice commands, or you can develop a mobile application specific to your project
with the MIT Appinventor editor.

With the HC05 Bluetooth module, you can operate not only the motor driver and
motor, but also other modules on PicoBricks. For example, you can light the RGB
LED in any color you want through the mobile application, read the temperature
and humidity values from the DHT11 module, the light values on the LDR sensor,
and print texts on the OLED screen. There is a mobile application specially written
for these processes with the MIT Appinventor editor, and ready-made codes written
in Microblocks to automatically run the data coming from the application. You can
run all these features by downloading and running the Microblocks file from the link
below and by downloading the android apk file and installing it on your phone.

Download Link

2.16.4. Coding the Project with MicroBlocks

After completing the assembly of the project, we first create two variables called
cmd and buffer in the code part, and read the serial port defined in 9600 bandwidth
with the buffer variable and transfer the incoming information to the cmd variable. If
you have written all the codes and you are not communicating between the phone
and PicoBricks, you can try changing the bandwidth from 9600 to 115200.

PicoBricks Project Book

134

Click to access the project’s MicroBlocks codes.

With the HC05 module, we perform comparison operations using the cmd variable,
which keeps the information coming over the serial port, and when blocks. If the
incoming information is “forward”, we must run the motor1 and motor2 blocks
between 0 and 100 values so that the robot car can move forward. The speed of your
vehicle will change in direct proportion to the fullness of your battery. In the same
way, we write the necessary codes for the vehicle to turn right if the information
received via bluetooth is “right”, to turn left if it is “left”, to go back if it is “backward”,
and to stop the vehicle if it is “stop”. In these codes, the vehicle is provided to perform
movements for a certain period of time. You can extend or remove the deadlines if
you want

After writing the codes and running it on PicoBricks, we download the mobile
application for android devices from the link below and install it on the phone.

Download Link

PicoBricks Project Book

135

You can open the language options with the Language button and edit the
language in English with the “en” option and the language in Turkish with the “tr”
option.

2.16.5. Construction Stages of the Project

1. Screw the first motor to the chassis of the 2WD robot car that comes out of the set
and fix it.

2. Fix the second motor by screwing it to the chassis.

3. Attach the wheels to the motors.

4. Fix the caster under the chassis using spacers.

5. Fix the spacer with the nut from the top of the chassis.

PicoBricks Project Book

136

6. Fix 4 spacers on the four corners of the lower chassis.

7. Fix the upper chassis with plug and nuts.

8. Connect the cables of the motors to the terminals on the motor driver.

9. Fix the motor driver, Bluetooth module, Picobricks board and battery box to the
chassis using hot silicone.

PicoBricks Project Book

137

2.16.6. MicroPython Codes of the Project

from machine import Pin, UART
from utime import sleep

uart = UART(0,9600) #If connection cannot be established, try 115200.
m1 = Pin(21, Pin.OUT)
m2 = Pin(22, Pin.OUT)

m1.low()
m2.low()

while True:
 sleep(0.05)
 if uart.any():
 cmd = uart.readline()
 if cmd==b’F’:
 m1.high()
 m2.high()
 elif cmd==b’R’:
 m1.high()
 m2.low()
 elif cmd==b’L’:
 m1.low()
 m2.high()
 elif cmd==b’S’:
 m1.low()
 m2.low()
 cmd=””

2.16.7. Arduino C Code of the Project

void setup() {
 Serial1.begin(9600);
}

void loop() {
 if (Serial1.available() > 0) {

 char sread = Serial1.read();
 Serial.println(sread);

PicoBricks Project Book

138

 if (sread == ‘f’) {
 Forward();
 } else if(sread == ‘r’){
 Turn_Right();
 } else if(sread == ‘l’){
 Turn_Left();
 } else if(sread == ‘s’){
 Stop();
 }
 }
}

void Forward(){
 digitalWrite(21,HIGH);
 digitalWrite(22,HIGH);
 delay(1000);
 digitalWrite(21,LOW);
 digitalWrite(22,LOW);
}
void Turn_Left(){
 digitalWrite(21,LOW);
 digitalWrite(22,HIGH);
 delay(500);
 digitalWrite(21,LOW);
 digitalWrite(22,LOW);
}
void Turn_Right(){
 digitalWrite(21,HIGH);
 digitalWrite(22,LOW);
 delay(500);
 digitalWrite(21,LOW);
 digitalWrite(22,LOW);
}
void Stop(){
 digitalWrite(21,LOW);
 digitalWrite(22,LOW);
 delay(1000);
}

PicoBricks Project Book

139

After uploading the Arduino codes, download the android application from the
link below and open the terminal mode and use the letters f, b, r, l, s for vehicle
movements.

Link

GitHub Voice Controlled Robot Car Project Page

http://rbt.ist/voicecar

PicoBricks Project Book

140

2.17. Two Axis Robot Arm

Robot arms have replaced human power in the industrial field. In factories, robotic
arms undertake the tasks of carrying and turning loads of weights and sizes that
cannot be carried by a human. Being able to be positioned with a precision of one
thousandth of a millimeter is above the sensitivity that a human hand can exhibit.
When you watch the production videos of automobile factories, you will see how
vital the robot arms are. The reason why they are called robots is that they can be
programmed to do the same work with endless repetitions. The reason why it is
called an arm is because it has an articulated structure like our arms. How many
different directions a robot arm has the ability to rotate and move is expressed
as axes. Robot arms are also used for carving and shaping aluminum and various
metals. These devices, which are referred to as 7-axis CNC Routers, can shape metals
like a sculptor shapes mud.

According to the purpose of use in robot arms, stepper motor and servo motors,
which are a kind of electric motor, are used. PicoBricks allows you to make projects
with servo motors.

2.17.1. Project Details and Algorithm

In preparation for the installation, we will first write and upload the codes to set the
servo motors to 0 degrees. When an object is placed on the LDR sensor, the robot
arm will bend down and close its open gripper. After the gripper is closed, the robot
arm will rise again. As a result of each movement of the robot arm, a short beep will
be heard from the buzzer. The RGB LED will glow red when an object is placed on
the LDR sensor. When the object is held by the robot arm and lifted into the air, the
RGB LED will turn green.

Servo motor movements are very fast. In order to slow down the movement, we will
code the servo motors with a total of 90 degrees of movement, 2 degrees each at 30
millisecond intervals. We’re not going to do this for the gripper to close.

In order for the servo to perform its holding and releasing function, print and
assemble the necessary parts from the 3D printer from the link here.

PicoBricks Project Book

141

2.17.2. Wiring Diagram

2.17.3. Project Proposal

By adding the HC05 module to the 2 axis robot arm project, you can develop it by
controlling it from your mobile phone with the mobile application.

2.17.4. Construction Stages of the Poject

Prepare the parts of the Pan-Tilt kit to prepare the project. Carry your 3D printed
parts, waste cardboard pieces, hot silicone glue and scissors with you.

PicoBricks Project Book

142

1. First of all, we will prepare the fixed arm of the robot arm. Make an 8 cm high
cardboard cylinder into the rounded part of part D. Place it on the D part and stick it
with silicone.

2. Place the head that came out of the servo motor package on the C part by
shortening it a little. Fix with the smallest screws from the Pan Tilt kit.

3. Fix parts A and C together with 2 pointed screws.

PicoBricks Project Book

143

4. Internally attach the servo motor to part C. Then place the servo motor on part B
and screw it.

5. For the holder, cut one of the servo motor heads in the middle of the gear part
that you printed on the 3D printer and place it into the gear. Then screw it to the
servo motor.

6. Adhere together the 3D printed Linear gear and the handle with strong adhesive.

7. Place the servo in the 3D print holder and fix it. You can do this with hot silicone
or by screwing. When placing the servo gear on the linear gear, make sure it is fully
open.

PicoBricks Project Book

144

8. Stick the holding servo system to part B with silicone.

9. Pass the piece we prepared in step 3 over the cylinder we prepared from
cardboard in the first step and fix it with silicone.

10. Put the motor drive jumpers on the Servo pins. Connect the cable of the holding
servo to the GPIO21 and the cable of the tilting servo to the GPIO22.

PicoBricks Project Book

145

11. Place the motor driver, buzzer, LDR and RGB LED module on a platform and
place the robot arm on the platform accordingly. With the 3D Pen printer, you can
customize your project as you wish.

12. You can operate the Robot arm if you feed Picobricks with USB or 3 pen batteries
from the power jack on the Picoboard.

2.17.5. Coding the Project with MicroBlocks

Open Microblocks and connect to Picobricks. Add the servo library. Connect the

PicoBricks Project Book

146

holding motor to pin 21 and the bending motor to pin 22. Set the servo value of the
handle end of the robot arm to -90. Set the angle of the tilt motor to 0. When you
prepare the blocks below and click on them, the codes will run and the servos will
turn to the angle you set.

We will prepare the servo motor movements in separate blocks. For this, create four
command blocks named up, down, open, close from the My Blocks category.

For up and down arm movement, code the up and down blocks for 45 reps to
rotate 2 degrees each in 30 milliseconds. In order to change the angle value, create
a variable named angleupdown. There will be a change of -2 degrees in the down
block and 2 degrees in the up block.

To turn the gripper servo on, code its angle 90, to turn it off, code its angle -60. Add a
sound of your choice by adding the Tone library to the end of all servo movements.
100ms of ringing is enough.

PicoBricks Project Book

147

When the picobricks starts, the gripper servo should turn on, the angleupdown
variable should be set to its initial value of 90, and the robot arm should turn 90
degrees with the upwards pointing. The RGB LED should go out.

We realize that an object is on the LDR sensor when its value drops below 10. This
value may be different for your project. You can find out how many reads by clicking
on the block. Firstly, the RGB LED lights up red. In order to hold and lift the object,
the holding motor is opened, the downward movement is made, the holding motor
is closed and the upward movement is realized. Finally, the RGB LED lights up green.
Make it easier to watch the movement by putting a 500ms pause between each
movement.

Click to access the codes of the project.

PicoBricks Project Book

148

2.17.6. MicroPython Codes of the Project

Codes that calibrate servo motors:

from machine import Pin, PWM,
servo1=PWM(Pin(21))
servo2=PWM(Pin(22))

servo1.freq(50)
servo2.freq(50)

servo1.duty_u16(8200) # 180 degree
servo2.duty_u16(4770) # 90 degree

Project Codes:

from machine import Pin, PWM, ADC
from utime import sleep
from picobricks import WS2812
#define libraries

ws = WS2812(6, brightness=0.3)
ldr=ADC(27)
buzzer=PWM(Pin(20, Pin.OUT))
servo1=PWM(Pin(21))
servo2=PWM(Pin(22))
define LDR, buzzer and servo motors pins

servo1.freq(50)
servo2.freq(50)
buzzer.freq(440)
define frequencies of servo motors and buzzer

RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLACK = (0, 0, 0) # RGB color settings
angleupdown=4770
angleupdown2=8200

def up():
 global angleupdown

PicoBricks Project Book

149

 for i in range (45):
 angleupdown +=76
 servo2.duty_u16(angleupdown)
 sleep(0.03)
 buzzer.duty_u16(2000)
 sleep(0.1)
 buzzer.duty_u16(0)
 # servo2 goes up at specified intervals
def down():
 global angleupdown
 for i in range (45):
 angleupdown -=76
 servo2.duty_u16(angleupdown)
 sleep(0.03)
 buzzer.duty_u16(2000)
 sleep(0.1)
 buzzer.duty_u16(0)
 # servo2 goes down at specified intervals

def open():
 global angleupdown2
 for i in range (45):
 angleupdown2 +=500
 servo1.duty_u16(angleupdown2)
 sleep(0.03)
 buzzer.duty_u16(2000)
 sleep(0.1)
 buzzer.duty_u16(0)
 # servo1 works for opening the clamps
def close():
 global angleupdown2
 for i in range (45):
 angleupdown2 -=500
 servo1.duty_u16(angleupdown2)
 sleep(0.03)
 buzzer.duty_u16(2000)
 sleep(0.1)
 buzzer.duty_u16(0)
 # servo1 works for closing the clamps
open()
servo2.duty_u16(angleupdown)

PicoBricks Project Book

150

ws.pixels_fill(BLACK)
ws.pixels_show()
while True:
 if ldr.read_u16()>20000:
 ws.pixels_fill(RED)
 ws.pixels_show()
 sleep(1)
 buzzer.duty_u16(2000)
 sleep(1)
 buzzer.duty_u16(0)
 open()
 sleep(0.5)
 down()
 sleep(0.5)
 close()
 sleep(0.5)
 up()
 ws.pixels_fill(GREEN)
 ws.pixels_show()
 sleep(0.5)
 # According to the data received from LDR, RGB LED lights red and green and
servo motors move

2.16.7. Arduino C Codes of the Project
##include <Adafruit_NeoPixel.h>
#ifdef __AVR__
#include <avr/power.h>
#endif
#define PIN 6
#define NUMPIXELS 1
Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
#define DELAYVAL 500
// define required libraries
#include <Servo.h>
Servo myservo1;
Servo myservo2;

int angleupdown;

void setup() {

PicoBricks Project Book

151

 pinMode(20,OUTPUT);
 pinMode(27,INPUT);
 // define input and output pins

 pixels.begin();
 pixels.clear();

 myservo1.attach(21);
 myservo2.attach(22); // define servo motor pins
 Open();
 angleupdown=180;
 myservo2.write(angleupdown);

}

void loop() {
 if(analogRead(27)>150){

 pixels.setPixelColor(0, pixels.Color(255, 0, 0));
 pixels.show();
 delay(1000);
 tone(20,700);
 delay(1000);
 noTone(20);

 Open();
 delay(500);
 Down();
 delay(500);
 Close();
 delay(500);
 Up();
 pixels.setPixelColor(0, pixels.Color(0, 255, 0));
 pixels.show();
 delay(10000);
 pixels.setPixelColor(0, pixels.Color(0, 0, 0));
 pixels.show();
 Open();
 angleupdown=180;
 myservo2.write(angleupdown);
 // If the LDR data is greater than the specified limit, the buzzer will sound, the RGB
will turn red and servo motors will work

PicoBricks Project Book

152

 // The RGB will turn green when the movement is complete

 }
}

void Open(){
 myservo1.write(180);
}

void Close(){
 myservo1.write(30);
}

void Up(){

 for (int i=0;i<45;i++){

 angleupdown = angleupdown+2;
 myservo2.write(angleupdown);
 delay(30);
 }
}

void Down(){

 for (int i=0;i<45;i++){

 angleupdown = angleupdown-2;
 myservo2.write(angleupdown);
 delay(30);
 }
} delay(30);
 }

}

PicoBricks Project Book

153

GitHub Two Axis Robot Arm Project Page

http://rbt.ist/robotarm

PicoBricks Project Book

154

2.18. Smart House

Workplaces, factories, homes and even animal shelters… There are different
electronic systems that can be used to protect our living spaces against intruders.
These systems are produced and marketed as home and workplace security systems.
There are systems where the images produced by security cameras are processed
and interpreted, as well as security systems that detect the human body and its
movements with sensors and take action. Security systems are set up like a kind of
alarm clock and give audible and visual warnings when an unidentified activity is
detected in the specified time zone. It notifies the business or the home owner, and
it can also make automatic notifications to the security units.

Gas leakage, fire etc. in such cases, gas sensors are used in homes and workplaces
to prevent poisoning. In a negative situation, people living in the environment are
warned by giving a loud alarm.

We will prepare a model smart home project with PicoBricks using the HC-SR501
and MQ-2 gas sensor. This sensor HC-SR501, also known as PIR sensor, detects
motion by capturing the changes of infrared waves reflected by the human body.

2.18.1. Project Details and Algorithm

When the HC-SR501 PIR sensor detects motion, it gives digital output for 3 seconds.
We will use a Picoboard, buzzer and button LED module in the project. All parts must
be in the model. When Picobricks starts, the button must be pressed to activate the
alarm system. After pressing the button, we must wait 3 seconds for the hand to be
pulled out of the model. At the end of 3 seconds, the red LED lights up and the alarm
system is activated. When the alarm system detects a movement, the red LED will
start to flash and the buzzer will sound the alarm. To mute it, Picobricks must be
restarted.The MQ-2 sensor is always on. When it detects a toxic gas, it will notify you
with a buzzer and red LED.

2.18.2. Wiring Diagram

PicoBricks Project Book

155

2.18.3. Project Proposal

After making the 25th project, the smart greenhouse, by adding the ESP8266 mode
to the burglar alarm project, you can send a notification to the home owner’s phone
when a thief enters to the home, and turn the project into an IOT project. You can
install fire extinguishing pipes on the ceiling of the house with a submersible pump,
so that when there is a fire in the house, you can automatically extinguish it.

2.18.4. Construction Stages of the Project

To run the project, you have to turn a cardboard box into a model house. You will
need scissors, pencils, tape, glue, and a utility knife. Draw windows and doors on the
box with a pencil. Cut the door section with a utility knife.

You can use another cardboard to make the roof part.

Stick double-sided foam tape under the picobricks pieces.

Place pieces of Picobricks inside the model house. Position the PIR sensor to see the

PicoBricks Project Book

156

door directly from the inside. Stick the button module just above the door from the
inside.

When you connect the battery case to Picoboard and open it, the codes will start to
run. 3 seconds after pressing the button, the alarm system will be activated and the
red LED will turn on. As soon as you put your hand in the door, the buzzer will start to
sound.

When you hold the lighter gas inside the house, the alarm system is expected to be
activated again.

PicoBricks Project Book

157

2.18.5. Coding the Project with MicroBlocks

It waits for the button to be pressed to activate the alarm system. Activated
broadcast is made 3 seconds after the button is pressed.

Indicate that the alarm system is activated by lighting the red LED. Go to
Library>Sensing>PIR.ubl and add the block of the PIR sensor to MicroBlocks. Change
the pin number to 14. Hold on code execution until motion is detected. Broadcast
motion detected when motion is detected.

When motion detected broadcast is received, the buzzer will sound an alarm
continuously. You can customize the alarm sound as you wish by adding the Tone.
ubl library.

Click to access the codes of the project.

2.18.6. MicroPython Codes of the Project

from machine import Pin, PWM
from utime import sleep
define libraries
PIR=Pin(14, Pin.IN)
MQ2=Pin(1,Pin.IN)
buzzer=PWM(Pin(20,Pin.OUT))

PicoBricks Project Book

158

redLed=Pin(7,Pin.OUT)
button=Pin(10,Pin.IN,Pin.PULL_DOWN)
define output and input pins

activated=0
gas=0

while True:
 if button.value()==1:
 activated=1
 gas=0
 sleep(3)
 redLed.value(1)
 buzzer.duty_u16(0)
 if MQ2.value()==1:
 gas=1
 if activated==1:
 if PIR.value()==1:
 buzzer.duty_u16(6000)
 buzzer.freq(440)
 sleep(0.2)
 buzzer.freq(330)
 sleep(0.1)
 buzzer.freq(494)
 sleep(0.15)
 buzzer.freq(523)
 sleep(0.3)
 if gas==1:
 buzzer.duty_u16(6000)
 buzzer.freq(330)
 sleep(0.5)
 redLed.value(1)
 buzzer.freq(523)
 sleep(0.5)
 redLed.value(0)
 # LED will light and buzzer will sound when PIR detects motion or MQ2 detects
toxic gas

PicoBricks Project Book

159

2.18.7. Arduino C Codes of the Project

void actived (){
 digitalWrite(7,1);
 while(!(digitalRead(14) == 1))
 {
 _loop();
 }
 motion_detected();
}

void motion_detected (){
 while(1) {
 // buzzer settings
 tone(20,262,0.25*1000);
 delay(0.25*1000);
 tone(20,330,0.25*1000);
 delay(0.25*1000);
 tone(20,262,0.25*1000);
 delay(0.25*1000);
 tone(20,349,0.25*1000);
 delay(0.25*1000);
// sound the buzzer when PIR detected a motion
 _loop();
 }
}

void _delay(float seconds) {
 long endTime = millis() + seconds * 1000;
 while(millis() < endTime) _loop();
}

void _loop() {
}

void loop() {
 _loop();
}

void setup() {

PicoBricks Project Book

160

 pinMode(10,INPUT);
 pinMode(1,INPUT);
 pinMode(20,OUTPUT);
 pinMode(7,OUTPUT);
 pinMode(14,INPUT);
 // define input and output pins

 while(1) {
 if(digitalRead(10) == 1){
 _delay(3);
 actived();
 }
 if(digitalRead(1) == 1){
 while(!(digitalRead(10) == 1))
 {
 _loop();
 tone(20,349,0.5*1000);
 delay(0.5*1000);
 digitalWrite(7,1);
 _delay(0.5);
 tone(20,392,0.5*1000);
 delay(0.5*1000);
 digitalWrite(7,0);
 _delay(0.5);
 }
 }
 _loop();
 }
}

GitHub Smart House Project Page

http://rbt.ist/smarthouse

PicoBricks Project Book

161

2.19. Piggy Bank

Ultrasonic sensors are sensors that show electrical change by being affected by
sound waves. These sensors send sound waves at a frequency that our ears cannot
detect and produce distance information by calculating the return time of the
reflected sound waves. We, the programmers, develop projects by making sense of
the measured distance and the changes in distance. Parking sensors in the front
and back of the cars are the places where ultrasonic sensors are most common in
daily life. Do you know the creature that finds its way in nature with this method?
Because bats are blind, they find their way through the reflections of the sounds
they make. [Ses dalgalarının gösterildiği bir görsel olabilir]

Many of us like to save money. It is a very nice feeling that the money we save little
by little is useful when needed. In this project, you will make yourself a very enjoyable
and cute piggy bank. You will use the servo motor and ultrasonic distance sensor
while making the piggy bank.

2.19.1. Project Details and Algorithm

HC-SR04 ultrasonic distance sensor and SG90 servo motor will be used in this
project. When the user leaves money in the hopper of the piggy bank, the distance
sensor will detect the proximity and send it to the Picobricks. According to this
information, Picobricks will operate a servo motor and raise the arm, throw the
money into the piggy bank and the arm will go down again.

2.19.2. Wiring Diagram

PicoBricks Project Book

162

2.19.3. Project Proposal

By adding an RGB LED module to the glutton piggy bank project, you can make the
light turn on in the color you want every time a coin is thrown, you can add a buzzer
and make a sound every time a coin is thrown. You can also print the number of coin
flips on the screen by adding an OLED screen.

2.19.4. Construsction Stages of the Project

You can access the original files and construction stages of the project by clicking
here. Unlike the project in this link, we will use the HC-SR04 ultrasonic distance
sensor. You can download the updated 3D drawing files according to the HC-SR04
ultrasonic distance sensor from this link and get 3D printing.

1: Fix the plastic apparatus of the servo motor to the piggy bank arm with 2 screws.

2: Fix the second part of the piggy bank arm with the M3 screw and nut to the first
part where the hopper is.

PicoBricks Project Book

163

3: Pass the servo motor cable and place it in its slot.

4: Place the servo motor and its housing on the body of the piggy bank. You can use
hot glue here.

5: Place the ultrasonic distance sensor in the piggy bank body and fix it with hot
glue.

6: Attach the piggy bank arm to the servo motor and fix it to the top cover with M3
screws.

7: Fix the piggy bank arm to the body with M2 screw.

PicoBricks Project Book

164

8: Plug the cables of the servo motor and ultrasonic distance sensor and connect the
power cables.

9: According to the circuit diagram, connect the cables of the servo motor and
ultrasonic distance sensor to the pico.

10: Plug Pico’s USB cable and reassemble the cables and attach the bottom cover.
That is all.

2.19.5. Coding the Project with MicroBlocks

While writing the codes, you must first edit the angle of the servo motor. In order to
close the lid of the piggy bank, you must enter the angle values into the servo motor
and determine the most appropriate value. Then you need to find the servo motor
angle in the open position of the piggy bank. When the piggy bank is first started,
the lid should be in the closed position. When the value from the ultrasonic distance

PicoBricks Project Book

165

sensor is less than 5 cm, wait 2 seconds, the servo motor should work, lift the cover,
and after 300 milliseconds, it should work again and bring the cover to the closed
position.

Click to access the project’s MicroBlocks codes.

2.19.6. MicroPython Codes of the Project

from machine import Pin, PWM
import utime
#define the libraries

servo=PWM(Pin(21,Pin.OUT))
trigger = Pin(15, Pin.OUT)
echo = Pin(14, Pin.IN)
#define the input and output pins

servo.freq(50)
servo.duty_u16(6750)

def getDistance():
 trigger.low()
 utime.sleep_us(2)
 trigger.high()
 utime.sleep_us(5)
 trigger.low()
 while echo.value() == 0:
 signaloff = utime.ticks_us()
 while echo.value() == 1:
 signalon = utime.ticks_us()
 timepassed = signalon - signaloff

PicoBricks Project Book

166

 distance = (timepassed * 0.0343) / 2
 print(“The distance from object is “,distance,”cm”)
 return distance
#calculate distance
while True:
 utime.sleep(0.01)
 if int(getDistance())<=5: #if the distance variable is less than 5
 servo.duty_u16(4010)
 utime.sleep(0.3) #wait

 servo.duty_u16(6750)

2.19.7. Arduino C Codes of the Project

#include <Servo.h>
#define trigPin 15
#define echoPin 14
//define the libraries
Servo servo;
void setup() {
 Serial.begin (9600);
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 //define the input and output pins
 servo.attach(21); //define the servo pin
}
void loop() {
 long duration, distance;
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
 duration = pulseIn(echoPin, HIGH);
 distance = (duration/2) / 29.1;
 //calculate distance
 if (distance < 5) { //if the distance variable is less than 5
 Serial.print(distance);
 Serial.println(“ cm”);
 servo.write(179);
 }
 else if (distance>5) { // if the distance variable is greater than 5

PicoBricks Project Book

167

 Serial.print(distance);
 Serial.println(“ cm”);
 servo.write(100);
 }
}

GitHub Piggy Bank Project Page

http://rbt.ist/bank

PicoBricks Project Book

168

2.20. NFC Smart Door

Security systems include technologies that can control authorizations at building
and room entrances. Card entry systems, in which only authorized personnel can
enter the operating rooms of hospitals, are one of the first examples that come
to mind. In addition, the entrance doors of areas that should not be entered by
persons or personnel of all levels in military security centers are equipped with card
and password entry technologies. These electronic systems used in building and
room entrances not only prevent the entrance of unauthorized persons, but also
ensure that entry and exit information is kept under record. Password entry, card
entry, fingerprint scanning, face scanning, retina scanning and voice recognition
technologies are the authentication methods used in electronic entry systems.

Systems such as RFID and NFC are the basic forms of contactless payment
technologies today. Although the contactless payment technology in credit cards is
technically different, the working logic is the same. The maximum distance between
the reader and the card is one of the features that distinguishes the technologies
used from each other. When leaving the shopping stores, especially in clothing
stores, NFC tags on the products will beep if they are detectioned to the readers at
the entrance. A kind of RFID technology is used in those systems.

In this project, we will prepare a card entry system on a model house. The electronic
components we will use are MFRC522 RFID reader and 13.56 Mhz cards.

2.20.1. Project Details and Algorithm

Place the MFRC522 reader near the door of the model so that it is visible from the
outside. Place the RGB LED and the buzzer on the wall where the door is visible from
the outside. Picoboard can remain in the model. The entrance door of the model
should be connected to the door of the servo, while the servo is set to 0 degrees, the
door should be closed. You should determine the serial number of the RFID / NFC
tag that will open the door, create the homeowner variable and assign the serial
number to this variable.

Set the door to the closed position when Picobricks starts. Make the buzzer beep
when a card is shown to the RFID reader. If the serial number of the card being read
matches the serial number in the homeowner variable, turn the RGB LED on green.
Then let the door open. Make sure the door is closed 3 seconds after the door is
opened. If the serial number of the card being read does not match the homeowner
variable, turn the RGB LED on red. A different tone sounds from the buzzer.

PicoBricks Project Book

169

2.20.2. Wiring Diagram

Be sure to make the cable connections of the RC522 RFID card reader module
according to the table below.

VCC 3.3V

RST GP20 ***

GND GND

IRQ Not Connected

MISO GP16

MOSI GP19

SCK GP18

SDA GP17

*** Does not connect when using MicroBlocks

2.20.3. Project Proposal

In the automatic door project, you can give person names to RFID cards, by adding
an OLED screen to the project, you can print the name of the person who read the
card on the OLED screen when the card is read.

PicoBricks Project Book

170

2.20.4. Construction Stages of the Project

We will make the project on the house model you used in the Smart Home project
number 18. Drill holes for the RGB LED, Buzzer and RC522 RFID reader on the house
model.

Stick double-sided foam tape on the back of the RGB LED and Buzzer and stick it on
the box. Place the RC522 inside the model as in the image.

PicoBricks Project Book

171

Attach the servo motor to the inside of the model with double-sided tape as a hinge
in the upper left corner of the door. Attach the servo head to the door with hot glue
or liquid glue.

Finally, place the Pico board and the 2-key battery box inside the model house and
complete the cable connections. After making the final checks of your project, it is
ready to work.

PicoBricks Project Book

172

2.20.5. Coding the Project with MicroBlocks

First we need to read the current user’s card information. Then we will prepare the
codes of the project. Create a variable named homeowner. Add RC522 and Servo
libraries.

When Picobricks starts, specify the SDA pin and identify the module with the
“RC522_initialize” block. Place the if else structure inside the Forever loop. When the
card is read, we will print the card serial number on the screen. The “RC522 card UID”
block is a 4-element list. To show or compare this value, you should use the “join
items of list” block in the “Data” category.

Click for MicroBlocks codes required to read the Card Serial Number. Show your
card to RC522 when you run the code. Assign the card serial number above the code
blocks to the homeowner variable with the “list” block in the Data category. The
serial number of your card is different from the one written here.

PicoBricks Project Book

173

Now we can write the codes of the project’s algorithm. Define RC522 when
Picobricks starts, define homeowner variable and set servo angle.

The buzzer will beep when the card is shown. In cases where the card is not shown,
the statement “No Card detected” will be printed. Prepare the necessary codes as
follows by placing an if else structure inside the Forever loop.

Prepare the “if else” structure that will compare the homeowner variable with the
serial number of the card read right after the beep sounds. Print “Login Confirmed”
if the Serial numbers match. Print “invalid user” if the serial numbers do not match.
Your code should be like below.

PicoBricks Project Book

174

Your Servo should move and the RGB LED should light up green when the correct
card is shown. Wait 3 seconds and the servo should return to its original angle. The
RGB LED should light up red when the wrong card is shown. Wait 3 seconds. In cases
where the card is not being read, the RGB LED should be turned off. The finished
codes of the project should be as follows.

PicoBricks Project Book

175

Click to access the project’s MicroBlocks codes.

2.20.6. MicroPython Codes of the Project

The code to be run to learn the Card ID:

from machine import Pin, SPI
from mfrc522 import MFRC522

PicoBricks Project Book

176

import utime
#define libraries
sck = Pin(18, Pin.OUT)
mosi = Pin(19, Pin.OUT)
miso = Pin(16, Pin.OUT)
sda = Pin(17, Pin.OUT)
rst = Pin(15, Pin.OUT)
spi = SPI(0, baudrate=100000, polarity=0, phase=0, sck=sck, mosi=mosi, miso=miso)
rdr = MFRC522(spi, sda, rst)
#define MFRC522 pins

while True:
 (stat, tag_type) = rdr.request(rdr.REQIDL)
 if stat == rdr.OK:
 (stat, raw_uid) = rdr.anticoll()
 if stat == rdr.OK:
 uid = (“0x%02x%02x%02x%02x” % (raw_uid[0], raw_uid[1], raw_uid[2], raw_
uid[3]))
 print(uid)
 utime.sleep(1)
 #read the card and give the serial number of the card

Project Codes:

from machine import I2C, Pin, SPI, PWM
from mfrc522 import MFRC522
from ws2812 import NeoPixel
from utime import sleep

servo = PWM(Pin(21))
servo.freq(50)
servo.duty_u16(1350) #servo set 0 angle 8200 for 180.

buzzer = PWM(Pin(20, Pin.OUT))
buzzer.freq(440)

neo = NeoPixel(6, n=1, brightness=0.3, autowrite=False)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLACK = (0, 0, 0)

sck = Pin(18, Pin.OUT)
mosi = Pin(19, Pin.OUT)
miso = Pin(16, Pin.OUT)

PicoBricks Project Book

177

sda = Pin(17, Pin.OUT)
rst = Pin(15, Pin.OUT)
spi = SPI(0, baudrate=100000, polarity=0, phase=0, sck=sck, mosi=mosi, miso=miso)
homeowner = “0x734762a3”
rdr = MFRC522(spi, sda, rst)

while True:

 (stat, tag_type) = rdr.request(rdr.REQIDL)
 if stat == rdr.OK:
 (stat, raw_uid) = rdr.anticoll()
 if stat == rdr.OK:
 buzzer.duty_u16(3000)
 sleep(0.05)
 buzzer.duty_u16(0)
 uid = (“0x%02x%02x%02x%02x” % (raw_uid[0], raw_uid[1], raw_uid[2], raw_
uid[3]))
 print(uid)
 sleep(1)
 if (uid==homeowner):
 neo.fill(GREEN)
 neo.show()
 servo.duty_u16(6000)
 sleep(3)
 servo.duty_u16(1350)
 neo.fill(BLACK)
 neo.show()

 else:
 neo.fill(RED)
 neo.show()
 sleep(3)
 neo.fill(BLACK)
 neo.show()
 servo.duty_u16(1350)

2.20.7. Arduino C Codes of the Project

The code to be run to learn the Card ID:
#include <SPI.h>
#include <MFRC522.h>
//define libraries

int RST_PIN = 26;

PicoBricks Project Book

178

int SS_PIN = 17;
//define pins

MFRC522 rfid(SS_PIN, RST_PIN);

void setup()
{
 Serial.begin(9600);
 SPI.begin();
 rfid.PCD_Init();
}

void loop() {

 if (!rfid.PICC_IsNewCardPresent())
 return;
 if (!rfid.PICC_ReadCardSerial())
 return;
 rfid.uid.uidByte[0] ;
 rfid.uid.uidByte[1] ;
 rfid.uid.uidByte[2] ;
 rfid.uid.uidByte[3] ;
 printid();
 rfid.PICC_HaltA();
//Reading your ID.
}
void printid()
{
 Serial.print(“Your ID: “);
 for (int x = 0; x < 4; x++) {
 Serial.print(rfid.uid.uidByte[x]);
 Serial.print(“ “);
 }
 Serial.println(“”);

}

Project Codes:

#include <SPI.h>
#include <MFRC522.h>
#include <Servo.h>
#include <Adafruit_NeoPixel.h>

PicoBricks Project Book

179

//Define libraries.

#define RST_PIN 26
#define SS_PIN 17
#define servoPin 22
#define PIN 6
#define NUMPIXELS 1
#define buzzer 20
//define pins of servo,buzzer,neopixel and rfid.

Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
Servo motor;
MFRC522 rfid(SS_PIN, RST_PIN);

byte ID[4] = {“Write your own ID.”};

void setup() {
 pixels.begin();
 motor.attach(servoPin);
 Serial.begin(9600);
 SPI.begin();
 rfid.PCD_Init();
 pinMode(buzzer, OUTPUT);

}

void loop()
{
 pixels.clear();

 if (! rfid.PICC_IsNewCardPresent())
 return;
 if (! rfid.PICC_ReadCardSerial())
 return;

 if
 (
 rfid.uid.uidByte[0] == ID[0] &&
 rfid.uid.uidByte[1] == ID[1] &&
 rfid.uid.uidByte[2] == ID[2] &&
 rfid.uid.uidByte[3] == ID[3])
 {
 Serial.println(“Door Opened.”);

PicoBricks Project Book

180

 printid();
 tone(buzzer,523);
 delay(200);
 noTone(buzzer);
 delay(100);
 tone(buzzer,523);
 delay(200);
 noTone(buzzer);
 pixels.setPixelColor(0, pixels.Color(0, 250, 0));
 delay(200);
 pixels.show();
 pixels.setPixelColor(0, pixels.Color(0, 0, 0));
 delay(200);
 pixels.show();
 motor.write(180);
 delay(2000);
 motor.write(0);
 delay(1000);
 //RGB LED turns green and the door opens thanks to the servo motor if the correct
card is read to the sensor.
 }
 else
 {
 Serial.println(“Unknown Card.”);
 printid();
 tone(buzzer,494);
 delay(200);
 noTone(buzzer);
 delay(100);
 tone(buzzer,494);
 delay(200);
 noTone(buzzer);
 pixels.setPixelColor(0, pixels.Color(250, 0, 0));
 delay(100);
 pixels.show();
 pixels.setPixelColor(0, pixels.Color(0, 0, 0));
 delay(100);
 pixels.show();
 //RGB LED turns red and the door does not open if the wrong card is read to the
sensor
 }
 rfid.PICC_HaltA();
}
void printid()

PicoBricks Project Book

181

{
 Serial.print(“ID Number: “);
 for(int x = 0; x < 4; x++){
 Serial.print(rfid.uid.uidByte[x]);
 Serial.print(“ “);
 }
 Serial.println(“”);
}

GitHub NFC Smart Door Project Page

http://rbt.ist/door

PicoBricks Project Book

182

2.21. Automatic Trash Bin

The Covid 19 pandemic has changed people’s daily routines in many areas. In many
areas such as cleaning, working, shopping and social life, people were introduced
to a series of new rules that they had to comply with. Covid-19 has LED to the
development of new business areas as well as some products to stand out. At a time
when hand hygiene was very important, no one wanted to touch the lid of the trash
can to throw away their garbage.

When approached, the lids of which open automatically and when it is full, the
trash bins, which make bags ready to be thrown away, found buyers at prices far
above their cost. In addition, automatic disinfectant machines provided contactless
hygiene by pouring a certain amount of liquid into our palms when we held them
under our hands. Automatic disinfectant machines took place on the shelves at
prices well above their cost. These two products have similarities in terms of working
system. In automatic disinfectant machines, a pump with an electric motor directly
transfers the liquid, and some models have devices based on the pumping system
with the power of the servo motor. In automatic trash bins, a servo motor that
opens the lid was used, and infrared or ultrasonic sensors were used to detect hand
movement.

In this project, you will make a mobile and automatic stylish trash bin for your room
using an ultrasonic sensor and servo motor with PicoBricks.

2.21.1. Project Details and Algorithm

HC-SR04 ultrasonic distance sensor and SG90 servo motor will be used in this
project. When the user puts his hand in front of the lid of the trash can, the distance
sensor will detect the proximity and send it to the Picobricks. According to this
information, Picobricks will open the lid of the garbage can by running a servo motor
and will lower it again after a short while.

2.21.2. Wiring Diagram

PicoBricks Project Book

183

2.21.3. Coding the Project with MicroBlocks

While writing the codes, you must first edit the angle of the servo motor. In order
to bring the lid of the garbage can to the closed position, you must enter the angle
values to the servo motor and determine the most appropriate value. Then you need
to find the servo motor angle in the open position of the trash can. The lid must be
in the closed position when the dustbin is first started. When the value from the
ultrasonic distance sensor is less than 10 cm, wait 2 seconds, the servo motor should
work, lift the cover, and after 2 seconds, it should work again and bring the cover to
the closed position.

Click to access the project’s MicroBlocks codes.

2.21.4. Construction Stages of the Project

You can download the 3D drawing files of the project from this link and get 3D
printing.

PicoBricks Project Book

184

1: Fix it by screwing it to the trash bin cover of the servo motor apparatus.

2: Fix the ultrasonic distance sensor on the lid of the trash bin with the hot glue.

3: Pass the cables of the ultrasonic distance sensor through the hole in the box and
connect them to the pins shown in the picobricks circuit diagram, make the servo
motor and motor driver connections.

4: Fix the servo motor, picobricks and motor driver parts to the box with hot glue.

If everything went well, when you put your hand close to the garbage can, the lid of
the bucket will open and it will close again after you throw the garbage away.

PicoBricks Project Book

185

2.21.5. Project Proposal

As in this project, where we automate a trash can in our house using sensors and
motors, you can have a drawer or a cabinet door open automatically with the help of
sensors and motors.

2.21.6. MicroPython Codes of the Project

from machine import Pin, PWM
from utime import sleep

servo=PWM(Pin(21,Pin.OUT))
trigger = Pin(15, Pin.OUT)
echo = Pin(14, Pin.IN)

servo.freq(50)
servo.duty_u16(1920) #15 degree

def getDistance():
 trigger.low()
 utime.sleep_us(2)
 trigger.high()
 utime.sleep_us(5)
 trigger.low()
 while echo.value() == 0:
 signaloff = utime.ticks_us()
 while echo.value() == 1:
 signalon = utime.ticks_us()
 timepassed = signalon - signaloff
 distance = (timepassed * 0.0343) / 2
 print(“The distance from object is “,distance,”cm”)
 return distance

while True:
 sleep(0.01)
 if int(getDistance())<=10:
 servo.duty_u16(4010) #70 degree
 utime.sleep(0.3)
 servo.duty_u16(1920)

PicoBricks Project Book

186

2.21.7. Arduino C Codes of the Project

#include <Servo.h>
#define trigPin 14
#define echoPin 15
Servo servo;
void setup() {
 Serial.begin (9600);
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 servo.attach(21);
}

void loop() {
 long duration, distance;
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
 duration = pulseIn(echoPin, HIGH);
 distance = (duration/2) / 29.1;
 if (distance < 80) {
 Serial.print(distance);
 Serial.println(“ cm”);
 servo.write(179);
 }

 else if (distance<180) {
 Serial.print(distance);
 Serial.println(“ cm”);
 servo.write(100);
 }

}

PicoBricks Project Book

187

GitHub Automatic Trash Bin Project Page

http://rbt.ist/bin

PicoBricks Project Book

188

2.22. Digital Ruler

Many tools are used to measure length. At the beginning of these tools are rulers.
Our measuring instrument differs according to the place and size to measure. Tape
measures are used in construction and architecture, and calipers are used for small
objects that require millimeter precision. In addition, if it is desired to measure an
area that needs both large and precise measurement, distance meters working with
laser and infrared systems are used. Ultrasonography devices used in the health
sector also work with the same logic, but convert their measurements into visuals.

In our project, we will use PicoBricks and an ultrasonic sensor to prepare a digital
ruler that will display the distance value on the OLED screen when the button is
pressed. Ultrasonic sensors detect distance according to the return times of the
sound waves they emit.

2.22.1. Project Details and Algorithm

When Picobricks starts, instructions are displayed on the OLED screen. After the
user presses the button, 20 measurements are made at 50 millisecond intervals for
1 second and the average is taken. The red LED stays on during the measurement,
and the red LED turns off when the measurement is complete. The average value
is added to the distance from the tip of the sensor to the back of the box. The last
distance value is displayed on the OLED display.

2.22.2. Wiring Diagram

PicoBricks Project Book

189

2.22.3. Coding the Project with MicroBlocks

Start MicroBlocks and connect Picobricks. Add Tone, Distance, OLED Graphics
libraries. Create variables named distance to calculate the distance, measure so that
you can average the measurement value. Turn on the red LED to let you know that
the measurement has started when the button is pressed. After a short beep, make
20 measurements at 50 millisecond intervals and assign the average to the distance
value. Broadcast go to OLED to turn off the red LED and print the result on the OLED
screen.

Add the size of your box to the value measured by the sensor while printing the
distance variable on the screen. Since the thickness of the box we used in our project
is 6 cm, we added 6 cm to the distance variable and printed it on the screen. Make a
low sound to notify the user that the measurement is complete.

Click to access the project’s MicroBlocks codes.

PicoBricks Project Book

190

2.22.4. Construction Stages of the Project

To prepare the project, you need double-sided foam tape, a utility knife, a waste
cardboard box of approximately 15x10x5 cm.

1. Cut the holes for the ultrasonic sensor, OLED screen, button LED module, buzzer,
battery box to pass the cables with a utility knife.

PicoBricks Project Book

191

2. Hang all the cables inside the box and stick the back of the modules to the box
with double-sided foam tape. Connect the trig pin of the ultrasonic sensor to the
GPIO14 pin and the echo pin to the GPIO15 pin. You should connect the VCC pin to
the VBUS pin on the Picoboard.

3. After completing the cable connections of all modules, you can insert the 2-battery
box into the power jack of the Picoboard and turn on the switch. That’s it for the
digital ruler project!

PicoBricks Project Book

192

2.22.5. Project Proposal

You can turn the digital ruler into a height meter by fixing it to the wall or ceiling.
Since the height meter will be fixed on the wall or ceiling, it will not be possible to
measure by pressing the button. For this, you can add the HC05 bluetooth module
to the project and have it measure when a command is received from the mobile
application.

2.22.6. MicroPython Codes of the Project

from machine import Pin, PWM, I2C
from utime import sleep
from picobricks import SSD1306_I2C
import utime
#define the libraries
redLed=Pin(7,Pin.OUT)
button=Pin(10,Pin.IN,Pin.PULL_DOWN)
buzzer=PWM(Pin(20,Pin.OUT))
buzzer.freq(392)
trigger = Pin(15, Pin.OUT)
echo = Pin(14, Pin.IN)
#define input and output pins
WIDTH = 128
HEIGHT = 64
#OLED screen settings
sda=machine.Pin(4)
scl=machine.Pin(5)
i2c=machine.I2C(0,sda=sda, scl=scl, freq=1000000)
#initialize digital pin 4 and 5 as an OUTPUT for OLED communication
oled = SSD1306_I2C(128, 64, i2c)
measure=0
finalDistance=0

def getDistance():
 trigger.low()
 utime.sleep_us(2)
 trigger.high()
 utime.sleep_us(5)
 trigger.low()
 while echo.value() == 0:
 signaloff = utime.ticks_us()

PicoBricks Project Book

193

 while echo.value() == 1:
 signalon = utime.ticks_us()
 timepassed = signalon - signaloff
 distance = (timepassed * 0.0343) / 2
 return distance
#calculate the distance
def getMeasure(pin):
 global measure
 global finalDistance
 redLed.value(1)
 for i in range(20):
 measure += getDistance()
 sleep(0.05)
 redLed.value(0)
 finalDistance = (measure/20) + 1
 oled.fill(0)
 oled.show()
 oled.text(“>Digital Ruller<”, 2,5)
 oled.text(“Distance “ + str(round(finalDistance)) +” cm”, 0, 32)
 oled.show()
#print the specified distance to the specified x and y coordinates on the OLED
screen
 print(finalDistance)
 buzzer.duty_u16(4000)
 sleep(0.05)
 buzzer.duty_u16(0)
 measure=0
 finalDistance=0
 #sound the buzzer
button.irq(trigger=machine.Pin.IRQ_RISING, handler=getMeasure)

2.22.7. Arduino C Codes of the Project

#include <Wire.h>
#include “ACROBOTIC_SSD1306.h”
#include <NewPing.h>
// define the libraries
#define TRIGGER_PIN 15
#define ECHO_PIN 14
#define MAX_DISTANCE 400

PicoBricks Project Book

194

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);

#define T_B 493

int distance = 0;
int total = 0;

void setup() {
 pinMode(7,OUTPUT);
 pinMode(20,OUTPUT);
 pinMode(10,INPUT);
 // define input and output pins
 Wire.begin();
 oled.init();
 oled.clearDisplay();

}

void loop() {

 delay(50);
 if(digitalRead(10) == 1){

 int measure=0;
 digitalWrite(7,HIGH);
 tone(20,T_B);
 delay(500);
 noTone(20);

 for (int i=0;i<20;i++){

 measure=sonar.ping_cm();
 total=total+measure;
 delay(50);
 }

 distance = total/20+6; // calculate the distance
 digitalWrite(7,LOW);

 delay(1000);

PicoBricks Project Book

195

 oled.clearDisplay();
 oled.setTextXY(2,1);
 oled.putString(“>Digital Ruler<”);
 oled.setTextXY(5,1);
 oled.putString(“Distance: “);
 oled.setTextXY(5,10);
 String string_distance=String(distance);
 oled.putString(string_distance);
 oled.setTextXY(5,12);
 oled.putString(“cm”); // print the calculated distance on the OLED
screen

 measure=0;
 distance=0;
 total=0;
 }
}

GitHub Digital Ruler Project Page

http://rbt.ist/ruler

PicoBricks Project Book

196

2.23. Air Piano

With the development of electronic technology, musical instruments that are
difficult to produce, expensive and producing high-quality sound have been
digitized. Pianos are one of these instruments. Each key of digital pianos produces
electrical signals at a different frequency. Thus, it can play 88 different notes from
its speakers. Factors such as the delay time of the keys of digital instruments, the
quality of the speaker, the resolution of the sound have appeared as the factors
affecting the quality. In electric guitars, vibrations in strings are digitized instead of
keys. On the other hand, In wind instruments, the notes played can be converted
into electrical signals and recorded thanks to the high-resolution microphones
plugged into the sound output. This development in electronic technology has
facilitated access to high-cost musical instruments, music education has gained a
wider variety and spread to a wider audience.

In this project we will make a simple piano that can play 8 notes with PicoBricks. The
speaker of this piano will be the buzzer. The ultrasonic sensor will act as the keys of
the piano.

2.23.1. Project Details and Algorithm

In this project, we will make a piano application using the HC-SR04 Ultrasonic
distance sensor and the buzzer module on PicoBricks. We will make the buzzer play
different notes according to the values coming from the distance sensor, and we
will create melodies by moving our hand closer to the sensor and away from it. In
addition, we will instantly print the distance played note information on the OLED
screen.

2.23.2. Wiring Diagram

PicoBricks Project Book

197

2.23.3. Coding the Project with MicroBlocks

When we start to write the code of the project with MicroBlocks, we first need to
import the Tone library, the OLED Graphics library in the Graphics category and the
Distance libraries in the Sensing category by clicking the Add Library button. After
adding the libraries, we must define the pins for the HC-SR04 module and create a
variable called distance to receive and process the data from the sensor, and write
the necessary codes to transfer the sensor information to the variable and show it on
the OLED screen.

Each note has a letter equivalent. The tone library also contains blocks that we can
run by typing the letter equivalents of the notes.

We should write the letter equivalents of the notes we want to play in the field in the
Play block. By comparing the distance values in the distance variable, you can run
the project by changing the octave value in the play block as you wish, after writing
the necessary codes for the notes to change in sequence at intervals of 5 cm.

PicoBricks Project Book

198

Click to access the project’s MicroBlocks codes.

2.23.4. Construction Stages of the Project

PicoBricks Project Book

199

2.23.5. Project Proposal

There is one instant button on PicoBricks. By connecting 7 buttons to Pico, you can
make different notes play when each key is pressed, you can use buttons for octave
value and beat times, and you can develop your piano project.

2.23.6. MicroPython Codes of the Project

from machine import Pin, PWM, I2C
from utime import sleep
import utime
from picobricks import SSD1306_I2C
import _thread
#define the libraries

buzzer=PWM(Pin(20,Pin.OUT))
trigger = Pin(15, Pin.OUT)
echo = Pin(14, Pin.IN)
#define the input and Output pins

WIDTH = 128
HEIGHT = 64
#OLED screen settings

sda=machine.Pin(4)

PicoBricks Project Book

200

scl=machine.Pin(5)
i2c=machine.I2C(0,sda=sda, scl=scl, freq=1000000)
#initialize digital pin 4 and 5 as an OUTPUT for OLED communication

oled = SSD1306_I2C(WIDTH, HEIGHT, i2c)

measure=0

def getDistance():
 trigger.low()
 utime.sleep_us(2)
 trigger.high()
 utime.sleep_us(5)
 trigger.low()
 while echo.value() == 0:
 signaloff = utime.ticks_us()
 while echo.value() == 1:
 signalon = utime.ticks_us()
 timepassed = signalon - signaloff
 distance = (timepassed * 0.0343) / 2
 return distance
#calculate distance

def airPiano():
 while True:
 global measure

 if measure>5 and measure<11:
 buzzer.duty_u16(4000)
 buzzer.freq(262)
 sleep(0.4)

 elif measure>10 and measure<16:
 buzzer.duty_u16(4000)
 buzzer.freq(294)
 sleep(0.4)

 elif measure>15 and measure<21:
 buzzer.duty_u16(4000)
 buzzer.freq(330)
 sleep(0.4)

PicoBricks Project Book

201

 elif measure>20 and measure<26:
 buzzer.duty_u16(4000)
 buzzer.freq(349)
 sleep(0.4)

 elif measure>25 and measure<31:
 buzzer.duty_u16(4000)
 buzzer.freq(392)
 sleep(0.4)

 elif measure>30 and measure<36:
 buzzer.duty_u16(4000)
 buzzer.freq(440)
 sleep(0.4)

 elif measure>35 and measure<41:
 buzzer.duty_u16(4000)
 buzzer.freq(494)
 sleep(0.4)
 else:
 buzzer.duty_u16(0)

_thread.start_new_thread(airPiano, ())
#play the tone determined by the value of the distance sensor

while True:
 measure=int(getDistance())
 oled.text(“Distance “ + str(measure)+ “ cm”, 5,30)
 oled.show()
 sleep(0.01)
 oled.fill(0)
 oled.show()
#write the specified texts to the determined x and ye coordinates on the OLED
screen

2.23.7. Arduino C Codes of the Project
#include <Wire.h>
#include “ACROBOTIC_SSD1306.h”
#include <NewPing.h>

PicoBricks Project Book

202

#define TRIGGER_PIN 15
#define ECHO_PIN 14
#define MAX_DISTANCE 400

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);

#define T_C 262
#define T_D 294
#define T_E 330
#define T_F 349
#define T_G 392
#define T_A 440
#define T_B 493

const int Buzzer = 20;

void setup() {
 pinMode(Buzzer,OUTPUT);

 Wire.begin();
 oled.init();
 oled.clearDisplay();

#if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
 clock_prescale_set(clock_div_1);
#endif
}

void loop() {

 delay(50);
 int distance=sonar.ping_cm();

 if(distance>5 & distance<11)
 {
 tone(Buzzer,T_C);
 }

 else if(distance>10 & distance<16)
 {
 tone(Buzzer,T_D);

PicoBricks Project Book

203

 }

 else if(distance>15 & distance<21)
 {
 tone(Buzzer,T_E);
 }

 else if(distance>20 & distance<26)
 {
 tone(Buzzer,T_F);
 }

 else if(distance>25 & distance<31)
 {
 tone(Buzzer,T_G);
 }

 else if(distance>30 & distance<36)
 {
 tone(Buzzer,T_A);
 }

 else if(distance>35 & distance<41)
 {
 tone(Buzzer,T_B);
 }

 else
 {
 noTone(Buzzer);
 }

 oled.clearDisplay();
 oled.setTextXY(2,4);
 oled.putString(“Distance: “);
 oled.setTextXY(4,6);
 String string_distance=String(distance);
 oled.putString(string_distance);
 oled.setTextXY(4,8);
 oled.putString(“cm”);
}

PicoBricks Project Book

204

GitHub Air Piano Project Page

http://rbt.ist/piano

PicoBricks Project Book

205

2.24. Maze Solver Robot

Coding education is as old as the history of programming languages. Today, different
products are used to popularize coding education and make it exciting and fun. The
first of these is educational robots. Preparing and coding robots improves children’s
engineering and coding skills. Robotics competitions are organized by institutions
and organizations to popularize coding education and encourage teachers and
students. One of these competitions is the Maze Solver Robot competitions. These
robots firstly learn the destination by wandering around the maze and return to
the starting point. Then, when they start the labyrinth again, they try to reach their
destination in the shortest way possible. Robots use distance sensors while learning
about the maze. Infrared or ultrasonic sensors are used in these robots.

Smart robot vacuums used in homes and workplaces also work with logic close to
the algorithms of maze-solver robots. Thanks to their algorithms that constantly
check and map the obstacles, they try to do it completely and without crashing.
Most of the smart vacuums are equipped with LIDAR and infrared sensors, which
make high-precision laser measurements for distance measurement and obstacle
detection.

In this project, we will make a simple robot with PicoBricks that you can prepare for
maze solver robot competitions.

2.24.1. Project Details and Algorithm

In the maze solving robot project, we will use the 2WD robot car kit that comes out
of the set. We will use the HC-SR04 ultrasonic distance sensor so that the robot can
detect the distance in front of it and decide its movements on its own. In the maze,
the robot will detect the distance in front of the car and move forward if it is empty.
If the distance is less than 5 cm, the car will turn right, measure the distance again, if
the distance on the right is greater than 5 cm, it will continue on its way, if it is less, it
will turn left and move forward. In this way, by turning right and left, we will enable
the vehicle to move forward and exit the maze through the empty roads in the maze.

PicoBricks Project Book

206

2.24.2. Wiring Diagram

2.24.3. Coding the Project with MicroBlocks

We can start to write the codes of the project by writing the necessary codes for the
robot car to make its movements. For this, we must define four blocks (functions)
named forward, turn right, turn left and stop. In these functions, we will place the
necessary blocks for the motors to rotate.

After defining the functions, we add the Distance extension from the Sensing
category and write the trig and echo pin numbers of the HC-SR04 ultrasonic
distance sensor into the distance block and create a variable named distance, so that
the value of this variable is the value from the sensor. Then, if the sensor value is less
than 5 cm, we make the car stop and turn right. If the right side is empty, the robot
car will continue on its way forward. However, when turning right, we measure the
distance again in case the right side is full, and if the distance is less than 5 cm, we
write the necessary codes for the vehicle to turn to the left side and move forward. In
this way, the vehicle will go towards the empty road and complete the maze.

PicoBricks Project Book

207

Click to access the project’s MicroBlocks codes.

With the wait block, the operating times of the motors are determined. Since the
operating times of the motors will be different depending on the state of the battery,
you should optimize the waiting times according to your own robot vehicle while
doing the project.

2.24.4. Construction Stages of the Project

In this project, you can build the maze-solving robot car by following the steps you
did for the 2WD robot car assembly in the voice-controlled car project in the section
2.2.18. We will not use the HC05 bluetooth module in this project. In order to mount
the HC-SR04 ultrasonic distance sensor on the robot, you can download the required
part from the link here and print from the 3D printer and mount it on the vehicle.

PicoBricks Project Book

208

After assembling the robot, you can use cardboard boxes to build the maze. You can
make walls out of cardboard, or you can use 3D printed walls to connect the walls
with hot glue to build the maze.

2.24.5. Project Proposal

In this project, by using the HC-SR04 ultrasonic distance sensor, we enabled the
2WD robot car to exit the maze by moving through the empty roads in the maze.
By using a servo motor, you can rotate the HC-SR04 module to the right and left,
and you can detect the empty roads without the vehicle turning and make it move
faster. Or, you can develop the project by mounting 3 HC-SR04 ultrasonic distance
sensors on the front, right and left parts of the vehicle, measuring the distances in 3
directions at the same time and directing the vehicle towards the empty road.

PicoBricks Project Book

209

2.24.6. MicroPython Codes of the Project

from machine import Pin
from utime import sleep
import utime
#define libraries

trigger = Pin(15, Pin.OUT)
echo = Pin(14, Pin.IN)
#define sensor pins

m1 = Pin(21, Pin.OUT)
m2 = Pin(22, Pin.OUT)
#define dc motor pins

m1.low()
m2.low()
signaloff = 0
signalon = 0

def getDistance():
 trigger.low()
 utime.sleep_us(2)
 trigger.high()
 utime.sleep_us(5)
 trigger.low()
 while echo.value() == 0:
 signaloff = utime.ticks_us()
 while echo.value() == 1:
 signalon = utime.ticks_us()
 timepassed = signalon - signaloff
 distance = (timepassed * 0.0343) / 2
 return distance
#calculate distance

measure=0
while True:

 measure=int(getDistance())
 print(measure)
 if measure>5:

PicoBricks Project Book

210

 m1.high()
 m2.high()
 sleep(1) #if the distance is higher than 5, the wheels go straight
 else:
 m1.low()
 m2.low()
 sleep(0.5)
 m1.high()
 m2.low()
 sleep(0.5)
 measure=int(getDistance())
 if measure<5:
 m1.low()
 m2.low()
 sleep(0.5)
 m1.low()
 m2.high()
 sleep(0.5)
 #If the distance is less than 5, wait, move in any direction; if the distance is less
than 5, move in the opposite direction

2.24.7. Arduino C Codes of the Project

#include <NewPing.h>

#define TRIGGER_PIN 15
#define ECHO_PIN 14
#define MAX_DISTANCE 400
//define sensor pins

NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);

void setup() {
 pinMode(21,OUTPUT);
 pinMode(22,OUTPUT); //define dc motor pins
}

void loop() {

 delay(50);
 int distance=sonar.ping_cm();

PicoBricks Project Book

211

 Forward();

 if(distance<5){

 Stop();
 delay(1000);
 Turn_Right();
 delay(1000);
 int distance=sonar.ping_cm();

 if(distance<5){
 Stop();
 delay(1000);
 Turn_Left();
 delay(500);
 // If the distance is less than 5, wait, turn right; if the distance is less than 5 again,
move in the opposite direction
 }
 }
}

void Forward(){
 digitalWrite(21,HIGH);
 digitalWrite(22,HIGH); //if the distance is higher than 5, go straight
}
void Turn_Left(){
 digitalWrite(21,LOW);
 digitalWrite(22,HIGH); //turn left
}
void Turn_Right(){
 digitalWrite(21,HIGH);
 digitalWrite(22,LOW); //turn right
}
void Stop(){
 digitalWrite(21,LOW);
 digitalWrite(22,LOW); //wait

PicoBricks Project Book

212

}GitHub Maze Solver Robot Project Page

http://rbt.ist/solverrobot

PicoBricks Project Book

213

2.25. Smart Greenhouse

The rapid changes in climate due to the effect of global warming cause a decrease
in productivity in agricultural activities. In the 1500s, Daniel Barbaro built the
first known greenhouse in history. Greenhouses are suitable environments for
growing plants that can provide controllable air, water, heat and light conditions.
In greenhouses, heaters are used to balance the heat, electric water motors for
irrigation, fans are used to regulate humidity and to provide pollination. With the
development of technology, the producer can follow the status of the greenhouse
with his phone from anywhere and can do the work that needs to be done. The
general name of this technology is Internet of Things (IOT).

Special sensors are used to measure temperature, humidity and oxygen content in
greenhouses. In addition, special sensors measuring soil moisture are used to decide
on irrigation. Electronically controlled drip irrigation systems are used to increase
irrigation efficiency.

In this project, we will prepare a simple greenhouse with IOT technology and
PicoBricks. We will use PicoBricks with the ESP8266 wifi module in this greenhouse.
In this way, we will turn the greenhouse into an object that we can track over the
Internet.

2.25.1. Project Details and Algorithm

The greenhouse model you will prepare will include a soil moisture sensor, and a
DHT11 temperature and humidity sensor hanging from the top. A submersible pump
will be placed in the water tank outside the model, and the hose coming out of the
end of the pump will go to the ground in the greenhouse. Picoboard will be placed
in a suitable place outside the greenhouse model.

When Picobricks starts, it starts to broadcast wifi thanks to the ESP8266 wifi module.
When we enter the IP address of Esp8266 from the smart phone connected to the
same network, we encounter the web page where we will control the Greenhouse.
Here we can see the temperature and humidity values. If we wish, we can start the
irrigation process by giving the irrigation command.

PicoBricks Project Book

214

2.25.2. Wiring Diagram

2.25.3. Coding the Project with MicroBlocks

When Picobricks starts, the code blocks that make the WiFi settings that
Greenhouse will connect to and enable the ESP8266 to connect to the wireless
network and get IP are as follows. In the ESP01_connect_to block, write the SSID and
Password information of the wireless network to which you will connect the smart
greenhouse.

PicoBricks Project Book

215

A block of code to which requests and responses are routed, where serial
communication is constantly monitored.

PicoBricks Project Book

216

Code block that captures questions and directs them to the answer.

PicoBricks Project Book

217

Code block that sends greenhouse information and irrigation completion as a
response.

PicoBricks Project Book

218

Code block in which the irrigation command activates the submersible pump.

About 20 seconds after you connect Picobricks to MicroBlocks and run the codes,
Greenhouse will connect to the WiFi network and the assigned IP address will
appear in the speech bubble. Make a note of this IP address to write to the Mobile
app.

PicoBricks Project Book

219

1- Install the Sera Control application on your device. The last two digits of the IP
address specified by MicroBlocks codes are “?” type in the boxes and click the
CONNECT button. When you encounter the screen in the image number 2, it means
that Greenhouse and the mobile application are connected to each other via WiFi.

2- If you click the INFO button, after 20 seconds, the data read by the sensors in the
greenhouse will be displayed on the console.

3- If you press the WATERING button, the submersible pump starts within 10 seconds
and stops after 10 seconds. Then the statement that the irrigation process is finished
appears on the screen.

Click to access the project’s MicroBlocks codes.

Click to download the required Android app.

Click for MIT App Inventor File.

PicoBricks Project Book

220

2.25.4. Construction Stages of the Project

1-Detach the floor of the Greenhouse model from the SR-2 coded part in the
Greenhouse kit.

2- Attach the pieces in the middle of the SR-3 piece to the floor of the Greenhouse.

PicoBricks Project Book

221

3- Remove the inner walls of the greenhouse from the SR-4 part and attach it to the
ground of the greenhouse.

4- Remove the Greenhouse arches in SR-1 and SR-3 and place them on the
greenhouse floor.

PicoBricks Project Book

222

5-Cover the rectangular area where soil will be placed with cling film. After irrigation,
you will protect the model parts. Pour the plant soil into the greenhouse. Fill so that
there is no empty space.

6- Insert the parts of the SR-4 into the notches on the greenhouse.

PicoBricks Project Book

223

7-Thread the remaining two thin flat pieces of SR-4 through the holes on both sides
of the greenhouse from the underside. This process makes the greenhouse more
robust.

8- Pass the hose to the submersible pump. You will install an irrigation system similar
to the drip irrigation system in the greenhouse. Pass the hose where you want the
soil to be irrigated. Remember to cut the hose just enough to reach the water tank.

PicoBricks Project Book

224

9- Place the DHT11 temperature and humidity sensor on the greenhouse model and
the Soil Moisture Sensor in the soil.

10- Plug the Soil Moisture sensor to the pin number GPIO27 on the Picoboard
and connect the 2 pen battery to the power input of the Picoboard. Place the
submersible pump and the end of the hose in a deep container of water. Be careful
not to get the motor drive wet.

PicoBricks Project Book

225

2.25.5. Project Proposal

In the smart greenhouse project, by adding an OLED screen to the greenhouse
entrance, you can monitor the humidity and temperature values inside, and by
adding sensors such as MQ2 gas sensor, carbon dioxide sensor, air quality sensor,
you can monitor the weather inside the greenhouse via WiFi with your mobile
phone. In addition, by adding a DC fan and relay to the greenhouse, you can turn
the ventilation on and off according to the indoor air quality with a mobile phone via
WiFi.

2.25.6. MicroPython Codes of the Project
import utime
import uos
import machine
from machine import Pin, ADC
from picobricks import DHT11
from utime import sleep

dht_sensor = DHT11(Pin(11))
smo_sensor=ADC(27)
m1 = Pin(22, Pin.OUT)
m1.low()

print(“Machine: \t” + uos.uname()[4])
print(“MicroPython: \t” + uos.uname()[3])

uart0 = machine.UART(0, baudrate=115200)
print(uart0)

def Connect_WiFi(cmd, uart=uart0, timeout=5000):
 print(“CMD: “ + cmd)
 uart.write(cmd)
 utime.sleep(7.0)
 Wait_ESP_Rsp(uart, timeout)
 print()

def Rx_ESP_Data():
 recv=bytes()
 while uart0.any()>0:
 recv+=uart0.read(1)
 res=recv.decode(‘utf-8’)
 return res

PicoBricks Project Book

226

def Send_AT_Cmd(cmd, uart=uart0, timeout=2000):
 print(“CMD: “ + cmd)
 uart.write(cmd)
 Wait_ESP_Rsp(uart, timeout)
 print()

def Wait_ESP_Rsp(uart=uart0, timeout=2000):
 prvMills = utime.ticks_ms()
 resp = b””
 while (utime.ticks_ms()-prvMills)<timeout:
 if uart.any():
 resp = b””.join([resp, uart.read(1)])
 print(“resp:”)
 try:
 print(resp.decode())
 except UnicodeError:
 print(resp)

Send_AT_Cmd(‘AT\r\n’) #Test AT startup
Send_AT_Cmd(‘AT+GMR\r\n’) #Check version information
Send_AT_Cmd(‘AT+CIPSERVER=0\r\n’)
Send_AT_Cmd(‘AT+RST\r\n’) #Check version information
Send_AT_Cmd(‘AT+RESTORE\r\n’) #Restore Factory Default Settings
Send_AT_Cmd(‘AT+CWMODE?\r\n’) #Query the WiFi mode
Send_AT_Cmd(‘AT+CWMODE=1\r\n’) #Set the WiFi mode = Station mode
Send_AT_Cmd(‘AT+CWMODE?\r\n’) #Query the WiFi mode again
Send_AT_Cmd(‘AT+CWJAP=”ID”,”Password”\r\n’, timeout=5000) #Connect to AP
utime.sleep(3.0)
Send_AT_Cmd(‘AT+CIFSR\r\n’) #Obtain the Local IP Address
utime.sleep(3.0)
Send_AT_Cmd(‘AT+CIPMUX=1\r\n’)
utime.sleep(1.0)
Send_AT_Cmd(‘AT+CIPSERVER=1,80\r\n’) #Obtain the Local IP Address
utime.sleep(1.0)

while True:
 res =””
 res=Rx_ESP_Data()
 utime.sleep(2.0)
 if ‘+IPD’ in res: # if the buffer contains IPD(a connection), then respond with HTML
handshake
 id_index = res.find(‘+IPD’)

PicoBricks Project Book

227

 if ‘/WATERING’ in res:
 print(‘Irrigation Start’)
 m1.high()
 utime.sleep(10)
 m1.low()
 print(‘Irrigation Finished’)
 connection_id = res[id_index+5]
 print(“connectionId:” + connection_id)
 print (‘! Incoming connection - sending webpage’)
 uart0.write(‘AT+CIPSEND=’+connection_id+’,200’+’\r\n’)
 utime.sleep(1.0)
 uart0.write(‘HTTP/1.1 200 OK’+’\r\n’)
 uart0.write(‘Content-Type: text/html’+’\r\n’)
 uart0.write(‘Connection: close’+’\r\n’)
 uart0.write(‘’+’\r\n’)
 uart0.write(‘<!DOCTYPE HTML>’+’\r\n’)
 uart0.write(‘<html>’+’\r\n’)
 uart0.write(‘<body><center><H1>CONNECTED...
</H1></center>’+’\r\n’)
 uart0.write(‘<body><center><H1>Irrigation Complete.
</H1></center>’+’\
r\n’)
 uart0.write(‘</body></html>’+’\r\n’)
 elif ‘/SERA’ in res:
 #sleep(1) # It was used for DHT11 to measure.
 dht_sensor.measure() # Use the sleep() command before this line.
 temp=dht_sensor.temperature
 hum=dht_sensor.humidity
 smo=round((smo_sensor.read_u16()/65535)*100)
 sendStr=”\”TEMP\”:{}, \”Humidity\”:{}, \”S.Moisture\”:{}%”.format(temp,hum,smo)
 sendText=”{“+sendStr+”}”
 strLen=46+len(sendText)
 connection_id = res[id_index+5]
 print(“connectionId:” + connection_id)
 print (‘! Incoming connection - sending webpage’)
 atCmd=”AT+CIPSEND=”+connection_id+”,”+str(strLen)
 uart0.write(atCmd+’\r\n’)
 utime.sleep(1.0)
 uart0.write(‘HTTP/1.1 200 OK’+’\r\n’)
 uart0.write(‘Content-Type: text/html’+’\r\n’)
 uart0.write(‘’+’\r\n’)
 uart0.write(sendText+’\r\n’)

PicoBricks Project Book

228

 elif ‘/’ in res:

 print(“resp:”)
 print(res)
 connection_id = res[id_index+5]
 print(“connectionId:” + connection_id)
 print (‘! Incoming connection - sending webpage’)
 uart0.write(‘AT+CIPSEND=’+connection_id+’,200’+’\r\n’)
 utime.sleep(3.0)
 uart0.write(‘HTTP/1.1 200 OK’+’\r\n’)
 uart0.write(‘Content-Type: text/html’+’\r\n’)
 uart0.write(‘Connection: close’+’\r\n’)
 uart0.write(‘’+’\r\n’)
 uart0.write(‘<!DOCTYPE HTML>’+’\r\n’)
 uart0.write(‘<html>’+’\r\n’)
 uart0.write(‘<body><center><H1>CONNECTED.
</H1></center>’+’\r\n’)
 uart0.write(‘<center><h4>INFO:Get Sensor Data</br>WATERING:Run Water
Pump</h4></center>’+’\r\n’)
 uart0.write(‘</body></html>’+’\r\n’)
 utime.sleep(4.0)
 Send_AT_Cmd(‘AT+CIPCLOSE=’+ connection_id+’\r\n’) # once file sent, close
connection
 utime.sleep(3.0)
 recv_buf=”” #reset buffer
 print (‘Waiting For connection...’)

2.25.7. Arduino C Codes of the Project
#include <DHT.h>
#define RX 0
#define TX 1

#define LIMIT_TEMPERATURE 30
#define DHTPIN 11
#define DHTTYPE DHT11
#define smo_sensor 27
#define motor 22
#define DEBUG true

DHT dht(DHTPIN, DHTTYPE);
int connectionId;

PicoBricks Project Book

229

void setup() {
 Serial1.begin(115200);
 dht.begin();
 pinMode(smo_sensor, INPUT);
 pinMode(motor, OUTPUT);

 sendData(“AT+RST\r\n”, 2000, DEBUG); // reset module
 sendData(“AT+GMR\r\n”, 1000, DEBUG); // configure as access point
 sendData(“AT+CIPSERVER=0\r\n”, 1000, DEBUG); // configure as access point
 sendData(“AT+RST\r\n”, 1000, DEBUG); // configure as access point
 sendData(“AT+RESTORE\r\n”, 1000, DEBUG); // configure as access point
 sendData(“AT+CWMODE?\r\n”, 1000, DEBUG); // configure as access point
 sendData(“AT+CWMODE=1\r\n”, 1000, DEBUG); // configure as access point
 sendData(“AT+CWMODE?\r\n”, 1000, DEBUG); // configure as access point
 sendData(“AT+CWJAP=\”WIFI_ID\”,\”WIFI_PASSWORD\”\r\n”, 5000, DEBUG); // ADD
YOUR OWN WIFI ID AND PASSWORD
 delay(3000);
 sendData(“AT+CIFSR\r\n”, 1000, DEBUG); // get ip address
 delay(3000);
 sendData(“AT+CIPMUX=1\r\n”, 1000, DEBUG); // configure for multiple connections
 delay(1000);
 sendData(“AT+CIPSERVER=1,80\r\n”, 1000, DEBUG); // turn on server on port 80
 delay(1000);
}

void loop() {
 if (Serial1.find(“+IPD,”)) {
 delay(300);
 connectionId = Serial1.read() - 48;
 String serialIncoming = Serial1.readStringUntil(‘\r’);
 Serial.print(“SERIAL_INCOMING:”);
 Serial.println(serialIncoming);

 if (serialIncoming.indexOf(“/WATERING”) > 0) {
 Serial.println(“Irrigation Start”);
 digitalWrite(motor, HIGH);
 delay(1000); // 10 sec.
 digitalWrite(motor, LOW);
 Serial.println(“Irrigation Finished”);
 Serial.println(“! Incoming connection - sending WATERING webpage”);
 String html = “”;
 html += “<html>”;

PicoBricks Project Book

230

 html += “<body><center><H1>Irrigation Complete.
</H1></center>”;
 html += “</body></html>”;
 espsend(html);
 }
 if (serialIncoming.indexOf(“/SERA”) > 0) {
 delay(300);

 float smo = analogRead(smo_sensor);
 float smopercent = (460-smo)*100.0/115.0 ; //min ve max değerleri değişken.
 Serial.print(“SMO: %”);
 Serial.println(smo);

 float temperature = dht.readTemperature();
 Serial.print(“Temp: “);
 Serial.println(temperature);

 float humidity = dht.readHumidity();
 Serial.print(“Hum: “);
 Serial.println(humidity);

 Serial.println(“! Incoming connection - sending SERA webpage”);
 String html = “”;
 html += “<html>”;
 html += “<body><center><H1>TEMPERATURE
</H1></center>”;
 html += “<center><H2>”;
 html += (String)temperature;
 html += “ C
</H2></center>”;

 html += “<body><center><H1>HUMIDITY
</H1></center>”;
 html += “<center><H2>”;
 html += (String)humidity;
 html += “%
</H2></center>”;

 html += “<body><center><H1>SMO
</H1></center>”;
 html += “<center><H2>”;
 html += (String)smopercent;
 html += “%
</H2></center>”;

 html += “</body></html>”;
 espsend(html);
 }

PicoBricks Project Book

231

 else
 Serial.println(“! Incoming connection - sending MAIN webpage”);
 String html = “”;
 html += “<html>”;
 html += “<body><center><H1>CONNECTED.
</H1></center>”;
 html += “<center><h4>INFO:Get Sensor Data</br><a href=’/
WATERING’>WATERING:Run Water Pump</h4></center>”;
 html += “</body></html>”;
 espsend(html);
 String closeCommand = “AT+CIPCLOSE=”; ////////////////close the socket connection////
esp command
 closeCommand += connectionId; // append connection id
 closeCommand += “\r\n”;
 sendData(closeCommand, 3000, DEBUG);

 }

}
//////////////////////////////sends data from ESP to webpage///////////////////////////

void espsend(String d)
{
 String cipSend = “ AT+CIPSEND=”;
 cipSend += connectionId;
 cipSend += “,”;
 cipSend += d.length();
 cipSend += “\r\n”;
 sendData(cipSend, 1000, DEBUG);
 sendData(d, 1000, DEBUG);
}

//////////////gets the data from esp and displays in serial monitor///////////////////////

String sendData(String command, const int timeout, boolean debug)
{
 String response = “”;
 Serial1.print(command);
 long int time = millis();
 while ((time + timeout) > millis())
 {
 while (Serial1.available())
 {

PicoBricks Project Book

232

 char c = Serial1.read(); // read the next character.
 response += c;
 }
 }

 if (debug)
 {
 Serial.print(response); //displays the esp response messages in arduino Serial
monitor
 }
 return response;
}

GitHub Smart Greenhouse Project Page

http://rbt.ist/greenhouse

PicoBricks Project Book

233

3. Resources

MicroBlocks Web Site: http://microblocks.fun/

3.1. 3D Models

3.1.1 Two Axis Robot Arm Project 3D Parts

Download

3.1.2. Piggy Bank Project 3D Parts

Original project page

Updated 3D illustrations:

Download

3.1.3. Trash Bin

Project page

3.1.4. Maze Solving Robot Project 3D Parts

Project page

3.4. Android Apps

3.4.1. Greenhouse Control Android App(.apk)

Download

3.4.2. Sera Control MITAppInventor 2 Project File

Download

3.4.3. Voice Controlled Robot Car Project Android App (.apk)

Download

Join the community

community.robotistan.com github.com/Robotistan/PicoBricks

PicoBricks GitHub

picobricks.com

